Перевод: с английского на все языки

со всех языков на английский

We also need to further develop an

  • 1 further

    1) лишний раз
    further upholding что лишний раз подтверждает;
    further demonstrating the greater influence of the wall temperature on A что лишний раз свидетельствует о большем влиянии температуры стенки на A;...
    in that it provides further justification for our use of А в том смысле, что это лишний раз подтверждает правомерность / обоснованность использования нами А
    2) в развитие; в дополнение к
    In this work, the method is further developed to А В настоящей статье, в развитие А, приводится метод...;
    Further to my memo of Jan. 19, 2006,... В развитие моей служебной записки от 19 января 2006 г....;
    Further to our discussion on Feb. 18 В дополнение к нашему совещанию 18 февраля
    3) кроме того; мало того
    Further, the production is also affected during dressing Мало того, правка [ шлифовального круга] отрицательно сказывается и на процессе производства
    4) новый
    There is a critical need for further research Настоятельно необходимо проведение новых исследований
    5) последующий
    Any further correspondence on site alarms will be coordinated by Mr. N Вся последующая переписка по поводу аварийной ситуации на объекте будет координироваться г-ном
    N
    6) дальнейший
    wait for further instructions ждать дальнейших указаний
    7) дополнительный
    further clarifications дополнительные разъяснения
    8) в свою очередь
    A can be further divided into В А можно в свою очередь подразделить на В
    9) еще один
    a further A is В еще одним А является В
    10) There is a need to perform further tests on... Необходимо продолжать исследования...
    11) further detail конкретизировать;
    further develop доработать;
    further insight into А более глубокое проникновение в [ суть] А

    English-Russian dictionary of scientific and technical difficulties vocabulary > further

  • 2 Need, Samuel

    SUBJECT AREA: Textiles
    [br]
    b. 1718
    d. 14 April 1781 Bread Street, Cheapside, London, England
    [br]
    English manufacturer of hosiery who helped to finance Arkwright's spinning machine and early cotton mills.
    [br]
    Samuel Need was apprenticed as a framework knitter and entered the hosiery trade c. 1742. He was a Dissenter and later became an Independent Congregationalist. He married Elizabeth Gibson of Hacking, Middlesex, who survived him and died in 1781. He had a warehouse in Nottingham, where he was made a burgess in 1739–40. In 1747 he bought a mill there and had a house adjoining it, but in 1777 he bought an estate at Arnold, outside the city. From about 1759 he supported Jedediah Strutt and William Woollat in their development of Strutt's invention of the rib attachment to the knitting machine. Need became a partner with Strutt in 1762 over the patent and then they shared a joint hosiery business. When Arkwright sought financial assistance from Ichabod and John Wright, the Nottingham bankers, to develop his spinning mill in that town, the Wrights turned him over to Samuel Need. Need, having profited so much from the successful patent with Strutt, was ready to exploit another; on 19 January 1770 Need and Strutt, on payment of £500, became co-partners with Arkwright, Smalley and Thornley for the remainder of Arkwright's patent. In Need, Arkwright had secured the patronage of the leading hosier in Nottingham. Need was leader of the Hosiers' Federation in 1779 when the framework knitters petitioned Parliament to better their conditions. He gave evidence against the workers' demands and, when their bill failed, the Nottingham workers attacked first his Nottingham house and then the one at Arnold.
    Need was to remain a partner with Arkwright until his death in 1781. He was involved in die mill at Cromford and also with some later ones, such as the Birkacre mill near Chorley, Lancashire, in 1777. He made a fortune and died at his home in London.
    [br]
    Further Reading
    M.L.Walker, 1963, A History of the Family of Need of Arnold, Nottinghamshire, London (a good biography).
    R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester (covers Need's relationship with Arkwright).
    R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester.
    S.D.Chapman, 1967, The Early Factory Masters, Newton Abbot (describes his wider contacts with the Midlands hosiery industry).
    RLH

    Biographical history of technology > Need, Samuel

  • 3 enterprise

    (business) entreprise f
    British Enterprise Allowance Scheme fonds m d'aide à la création d'entreprise;
    enterprise culture culture f d'entreprise;
    enterprise economy = type d'économie qui facilite la création d'entreprises;
    enterprise society = type de société où l'entreprise privée est valorisée;
    British enterprise zone = zone d'encouragement à l'implantation d'entreprises dans les régions économiquement défavorisées

    We also need to further develop an enterprise culture. We're in lockstep with Wal-Mart by being very action-oriented. This applies in our speed to market, streamlined decision making, and empowerment of people down to lower levels.

    English-French business dictionary > enterprise

  • 4 Strutt, Jedediah

    SUBJECT AREA: Textiles
    [br]
    b. 26 July 1726 South Normanton, near Alfreton, Derbyshire, England
    d. 7 May 1797 Derby, England
    [br]
    English inventor of a machine for making ribbed knitting.
    [br]
    Jedediah Strutt was the second of three sons of William, a small farmer and maltster at South Normanton, near Alfreton, Derbyshire, where the only industry was a little framework knitting. At the age of 14 Jedediah was apprenticed to Ralph Massey, a wheelwright near Derby, and lodged with the Woollats, whose daughter Elizabeth he later married in 1755. He moved to Leicester and in 1754 started farming at Blackwell, where an uncle had died and left him the stock on his farm. It was here that he made his knitting invention.
    William Lee's knitting machine remained in virtually the same form as he left it until the middle of the eighteenth century. The knitting industry moved away from London into the Midlands and in 1730 a Nottingham workman, using Indian spun yarn, produced the first pair of cotton hose ever made by mechanical means. This industry developed quickly and by 1750 was providing employment for 1,200 frameworkers using both wool and cotton in the Nottingham and Derby areas. It was against this background that Jedediah Strutt obtained patents for his Derby rib machine in 1758 and 1759.
    The machine was a highly ingenious mechanism, which when placed in front of an ordinary stocking frame enabled the fashionable ribbed stockings to be made by machine instead of by hand. To develop this invention, he formed a partnership first with his brother-in-law, William Woollat, and two leading Derby hosiers, John Bloodworth and Thomas Stamford. This partnership was dissolved in 1762 and another was formed with Woollat and the Nottingham hosier Samuel Need. Strutt's invention was followed by a succession of innovations which enabled framework knitters to produce almost every kind of mesh on their machines. In 1764 the stocking frame was adapted to the making of eyelet holes, and this later lead to the production of lace. In 1767 velvet was made on these frames, and two years later brocade. In this way Strutt's original invention opened up a new era for knitting. Although all these later improvements were not his, he was able to make a fortune from his invention. In 1762 he was made a freeman of Nottingham, but by then he was living in Derby. His business at Derby was concerned mainly with silk hose and he had a silk mill there.
    It was partly his need for cotton yarn and partly his wealth which led him into partnership with Richard Arkwright, John Smalley and David Thornley to exploit Arkwright's patent for spinning cotton by rollers. Together with Samuel Need, they financed the Arkwright partnership in 1770 to develop the horse-powered mill in Nottingham and then the water-powered mill at Cromford. Strutt gave advice to Arkwright about improving the machinery and helped to hold the partnership together when Arkwright fell out with his first partners. Strutt was also involved, in London, where he had a house, with the parliamentary proceedings over the passing of the Calico Act in 1774, which opened up the trade in British-manufactured all-cotton cloth.
    In 1776 Strutt financed the construction of his own mill at Helper, about seven miles (11 km) further down the Derwent valley below Cromford. This was followed by another at Milford, a little lower on the river. Strutt was also a partner with Arkwright and others in the mill at Birkacre, near Chorley in Lancashire. The Strutt mills were developed into large complexes for cotton spinning and many experiments were later carried out in them, both in textile machinery and in fireproof construction for the mills themselves. They were also important training schools for engineers.
    Elizabeth Strutt died in 1774 and Jedediah never married again. The family seem to have lived frugally in spite of their wealth, probably influenced by their Nonconformist background. He had built a house near the mills at Milford, but it was in his Derby house that Jedediah died in 1797. By the time of his death, his son William had long been involved with the business and became a more important cotton spinner than Jedediah.
    [br]
    Bibliography
    1758. British patent no. 722 (Derby rib machine). 1759. British patent no. 734 (Derby rib machine).
    Further Reading
    For the involvement of Strutt in Arkwright's spinning ventures, there are two books, the earlier of which is R.S.Fitton and A.P.Wadsworth, 1958, The Strutts and the Arkwrights, 1758–1830, Manchester, which has most of the details about Strutt's life. This has been followed by R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester.
    R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (for a general background to the textile industry of the period).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (covers Strutt's knitting inventions).
    RLH

    Biographical history of technology > Strutt, Jedediah

  • 5 remote maintenance

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote maintenance

  • 6 remote sevice

    1. дистанционное техническое обслуживание

     

    дистанционное техническое обслуживание
    Техническое обслуживание объекта, проводимое под управлением персонала без его непосредственного присутствия.
    [ОСТ 45.152-99 ]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    Service from afar

    Дистанционный сервис

    ABB’s Remote Service concept is revolutionizing the robotics industry

    Разработанная АББ концепция дистанционного обслуживания Remote Service революционизирует робототехнику

    ABB robots are found in industrial applications everywhere – lifting, packing, grinding and welding, to name a few. Robust and tireless, they work around the clock and are critical to a company’s productivity. Thus, keeping these robots in top shape is essential – any failure can lead to serious output consequences. But what happens when a robot malfunctions?

    Роботы АББ используются во всех отраслях промышленности для перемещения грузов, упаковки, шлифовки, сварки – всего и не перечислить. Надежные и неутомимые работники, способные трудиться день и ночь, они представляют большую ценность для владельца. Поэтому очень важно поддерживать их в надлежащей состоянии, ведь любой отказ может иметь серьезные последствия. Но что делать, если робот все-таки сломался?

    ABB’s new Remote Service concept holds the answer: This approach enables a malfunctioning robot to alarm for help itself. An ABB service engineer then receives whole diagnostic information via wireless technology, analyzes the data on a Web site and responds with support in just minutes. This unique service is paying off for customers and ABB alike, and in the process is revolutionizing service thinking.

    Ответом на этот вопрос стала новая концепция Remote Service от АББ, согласно которой неисправный робот сам просит о помощи. C помощью беспроводной технологии специалист сервисной службы АББ получает всю необходимую диагностическую информацию, анализирует данные на web-сайте и через считанные минуты выдает рекомендации по устранению отказа. Эта уникальная возможность одинаково ценна как для заказчиков, так и для самой компании АББ. В перспективе она способна в корне изменить весь подход к организации технического обслуживания.

    Every minute of production downtime can have financially disastrous consequences for a company. Traditional reactive service is no longer sufficient since on-site service engineer visits also demand great amounts of time and money. Thus, companies not only require faster help from the service organization when needed but they also want to avoid disturbances in production.

    Каждая минута простоя производства может привести к губительным финансовым последствиям. Традиционная организация сервиса, предусматривающая ликвидацию возникающих неисправностей, становится все менее эффективной, поскольку вызов сервисного инженера на место эксплуатации робота сопряжен с большими затратами времени и денег. Предприятия требуют от сервисной организации не только более быстрого оказания помощи, но и предотвращения возможных сбоев производства.

    In 2006, ABB developed a new approach to better meet customer’s expectations: Using the latest technologies to reach the robots at customer sites around the world, ABB could support them remotely in just minutes, thereby reducing the need for site visits. Thus the new Remote Service concept was quickly brought to fruition and was launched in mid-2007. Statistics show that by using the system the majority of production stoppages can be avoided.

    В 2006 г. компания АББ разработала новый подход к удовлетворению ожиданий своих заказчиков. Использование современных технологий позволяет специалистам АББ получать информацию от роботов из любой точки мира и в считанные минуты оказывать помощь дистанционно, в результате чего сокращается количество выездов на место установки. Запущенная в середине 2007 г. концепция Remote Service быстро себя оправдала. Статистика показывает, что её применение позволило предотвратить большое число остановок производства.

    Reactive maintenance The hardware that makes ABB Remote Service possible consists of a communication unit, which has a function similar to that of an airplane’s so-called black box 1. This “service box” is connected to the robot’s control system and can read and transmit diagnostic information. The unit not only reads critical diagnostic information that enables immediate support in the event of a failure, but also makes it possible to monitor and analyze the robot’s condition, thereby proactively detecting the need for maintenance.

    Устранение возникающих неисправностей Аппаратное устройство, с помощью которого реализуется концепция Remote Service, представляет собой коммуникационный блок, работающий аналогично черному ящику самолета (рис. 1). Этот блок считывает диагностические данные из контроллера робота и передает их по каналу GSM. Считывается не только информация, необходимая для оказания немедленной помощи в случае отказа, но и сведения, позволяющие контролировать и анализировать состояние робота для прогнозирования неисправностей и планирования технического обслуживания.

    If the robot breaks down, the service box immediately stores the status of the robot, its historical data (as log files), and diagnostic parameters such as temperature and power supply. Equipped with a built-in modem and using the GSM network, the box transmits the data to a central server for analysis and presentation on a dedicated Web site. Alerts are automatically sent to the nearest of ABB’s 1,200 robot service engineers who then accesses the detailed data and error log to analyze the problem.

    При поломке робота сервисный блок немедленно сохраняет данные о его состоянии, сведения из рабочего журнала, а также значения диагностических параметров (температура и характеристики питания). Эти данные передаются встроенным GSM-модемом на центральный сервер для анализа и представления на соответствующем web-сайте. Аварийные сообщения автоматически пересылаются ближайшему к месту аварии одному из 1200 сервисных инженеров-робототехников АББ, который получает доступ к детальной информации и журналу аварий для анализа возникшей проблемы.

    A remotely based ABB engineer can then quickly identify the exact fault, offering rapid customer support. For problems that cannot be solved remotely, the service engineer can arrange for quick delivery of spare parts and visit the site to repair the robot. Even if the engineer must make a site visit, service is faster, more efficient and performed to a higher standard than otherwise possible.

    Специалист АББ может дистанционно идентифицировать отказ и оказать быструю помощь заказчику. Если неисправность не может быть устранена дистанционно, сервисный инженер организовывает доставку запасных частей и выезд ремонтной бригады. Даже если необходимо разрешение проблемы на месте, предшествующая дистанционная диагностика позволяет минимизировать объем работ и сократить время простоя.

    Remote Service enables engineers to “talk” to robots remotely and to utilize tools that enable smart, fast and automatic analysis. The system is based on a machine-to-machine (M2M) concept, which works automatically, requiring human input only for analysis and personalized customer recommendations. ABB was recognized for this innovative solution at the M2M United Conference in Chicago in 2008 Factbox.

    Remote Service позволяет инженерам «разговаривать» с роботами на расстоянии и предоставляет в их распоряжение интеллектуальные средства быстрого автоматизированного анализа. Система основана на основе технологии автоматической связи машины с машиной (M2M), где участие человека сводится к анализу данных и выдаче рекомендаций клиенту. В 2008 г. это инновационное решение от АББ получило приз на конференции M2M United Conference в Чикаго (см. вставку).

    Proactive maintenance 
    Remote Service also allows ABB engineers to monitor and detect potential problems in the robot system and opens up new possibilities for proactive maintenance.

    Прогнозирование неисправностей
    Remote Service позволяет инженерам АББ дистанционно контролировать состояние роботов и прогнозировать возможные неисправности, что открывает новые возможности по организации профилактического обслуживания.

    The service box regularly takes condition measurements. By monitoring key parameters over time, Remote Service can identify potential failures and when necessary notify both the end customer and the appropriate ABB engineer. The management and storage of full system backups is a very powerful service to help recover from critical situations caused, for example, by operator errors.

    Сервисный блок регулярно выполняет диагностические измерения. Непрерывно контролируя ключевые параметры, Remote Service может распознать потенциальные опасности и, при необходимости, оповещать владельца оборудования и соответствующего специалиста АББ. Резервирование данных для возможного отката является мощным средством, обеспечивающим восстановление системы в критических ситуациях, например, после ошибки оператора.

    The first Remote Service installation took place in the automotive industry in the United States and quickly proved its value. The motherboard in a robot cabinet overheated and the rise in temperature triggered an alarm via Remote Service. Because of the alarm, engineers were able to replace a faulty fan, preventing a costly production shutdown.

    Первая система Remote Service была установлена на автозаводе в США и очень скоро была оценена по достоинству. Она обнаружила перегрев материнской платы в шкафу управления роботом и передала сигнал о превышении допустимой температуры, благодаря чему инженеры смогли заменить неисправный вентилятор и предотвратить дорогостоящую остановку производства.

    MyRobot: 24-hour remote access

    Having regular access to a robot’s condition data is also essential to achieving lean production. At any time, from any location, customers can verify their robots’ status and access maintenance information and performance reports simply by logging in to ABB’s MyRobot Web site. The service enables customers to easily compare performances, identify bottlenecks or developing issues, and initiate the most

    Сайт MyRobot: круглосуточный дистанционный доступ
    Для того чтобы обеспечить бесперебойное производство, необходимо иметь регулярный доступ к информации о состоянии робота. Зайдя на соответствующую страницу сайта MyRobot компании АББ, заказчики получат все необходимые данные, включая сведения о техническом обслуживании и отчеты о производительности своего робота. Эта услуга позволяет легко сравнивать данные о производительности, обнаруживать возможные проблемы, а также оптимизировать планирование технического обслуживания и модернизации. С помощью MyRobot можно значительно увеличить выпуск продукции и уменьшить количество выбросов.

    Award-winning solution
    In June 2008, the innovative Remote Service solution won the Gold Value Chain award at the M2M United Conference in Chicago. The value chain award honors successful corporate adopters of M2M (machine–to-machine) technology and highlights the process of combining multiple technologies to deliver high-quality services to customers. ABB won in the categoryof Smart Services.

    Приз за удачное решение
    В июне 2008 г. инновационное решение Remote Service получило награду Gold Value Chain (Золотая цепь) на конференции M2M United Conference в Чикаго. «Золотая цепь» присуждается за успешное масштабное внедрение технологии M2M (машина – машина), а также за достижения в объединении различных технологий для предоставления высококачественных услуг заказчикам. АББ одержала победу в номинации «Интеллектуальный сервис».

    Case study: Tetley Tetley GB Ltd is the world’s second-largest manufacturer and distributor of tea. The company’s manufacturing and distribution business is spread across 40 countries and sells over 60 branded tea bags. Tetley’s UK tea production facility in Eaglescliffe, County Durham is the sole producer of Tetley tea bags 2.

    Пример применения: Tetley Компания TetleyGB Ltd является вторым по величине мировым производителем и поставщиком чая. Производственные и торговые филиалы компании имеются в 40 странах, а продукция распространяется под 60 торговыми марками. Чаеразвесочная фабрика в Иглсклифф, графство Дарем, Великобритания – единственный производитель чая Tetley в пакетиках (рис. 2).

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which can help extend the mean time between failures, shorten the time to repair and lower the cost of automated production.

    Предлагаемые АББ контракты на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и общую стоимость автоматизированного производства.

    Robots in the plant’s production line were tripping alarms and delaying the whole production cycle. The spurious alarms resulted in much unnecessary downtime that was spent resetting the robots in the hope that another breakdown could be avoided. Each time an alarm was tripped, several hours of production time was lost. “It was for this reason that we were keen to try out ABB’s Remote Service agreement,” said Colin Trevor, plant maintenance manager.

    Установленные в технологической линии роботы выдавали аварийные сигналы, задерживающие выполнение производственного цикла. Ложные срабатывания вынуждали перезапускать роботов в надежде предотвратить возможные отказы, в результате чего после каждого аварийного сигнала производство останавливалось на несколько часов. «Именно поэтому мы решили попробовать заключить с АББ контракт на дистанционное техническое обслуживание», – сказал Колин Тревор, начальник технической службы фабрики.

    To prevent future disruptions caused by unplanned downtime, Tetley signed an ABB Response Package service agreement, which included installing a service box and system infrastructure into the robot control systems. Using the Remote Service solution, ABB remotely monitors and collects data on the “wear and tear” and productivity of the robotic cells; this data is then shared with the customer and contributes to smooth-running production cycles.

    Для предотвращения ущерба в результате незапланированных простоев Tetley заключила с АББ контракт на комплексное обслуживание Response Package, согласно которому системы управления роботами были дооборудованы сервисными блоками с необходимой инфраструктурой. С помощью Remote Service компания АББ дистанционно собирает данные о наработке, износе и производительности роботизированных модулей. Эти данные предоставляются заказчику для оптимизации загрузки производственного оборудования.

    Higher production uptime
    Since the implementation of Remote Service, Tetley has enjoyed greatly reduced robot downtime, with no further disruptions caused by unforeseen problems. “The Remote Service package has dramatically changed the plant,” said Trevor. “We no longer have breakdown issues throughout the shift, helping us to achieve much longer periods of robot uptime. As we have learned, world-class manufacturing facilities need world-class support packages. Remote monitoring of our robots helps us to maintain machine uptime, prevent costly downtime and ensures my employees can be put to more valuable use.”

    Увеличение полезного времени
    С момента внедрения Remote Service компания Tetley была приятно удивлена резким сокращением простоя роботов и отсутствием незапланированных остановок производства. «Пакет Remote Service резко изменил ситуацию на предприятии», – сказал Тревор. «Мы избавились от простоев роботов и смогли резко увеличить их эксплуатационную готовность. Мы поняли, что для производственного оборудования мирового класса необходим сервисный пакет мирового класса. Дистанционный контроль роботов помогает нам поддерживать их в рабочем состоянии, предотвращать дорогостоящие простои и задействовать наш персонал для выполнения более важных задач».

    Service access
    Remote Service is available worldwide, connecting more than 500 robots. Companies that have up to 30 robots are often good candidates for the Remote Service offering, as they usually have neither the engineers nor the requisite skills to deal with robotics faults themselves. Larger companies are also enthusiastic about Remote Service, as the proactive services will improve the lifetime of their equipment and increase overall production uptime.

    Доступность сервиса
    Сеть Remote Service охватывает более 700 роботов по всему миру. Потенциальными заказчиками Remote Service являются компании, имеющие до 30 роботов, но не имеющие инженеров и техников, способных самостоятельно устранять их неисправности. Интерес к Remote Service проявляют и более крупные компании, поскольку они заинтересованы в увеличении срока службы и эксплуатационной готовности производственного оборудования.

    In today’s competitive environment, business profitability often relies on demanding production schedules that do not always leave time for exhaustive or repeated equipment health checks. ABB’s Remote Service agreements are designed to monitor its customers’ robots to identify when problems are likely to occur and ensure that help is dispatched before the problem can escalate. In over 60 percent of ABB’s service calls, its robots can be brought back online remotely, without further intervention.

    В условиях современной конкуренции окупаемость бизнеса часто зависит от соблюдения жестких графиков производства, не оставляющих времени для полномасштабных или периодических проверок исправности оборудования. Контракт Remote Service предусматривает мониторинг состояния роботов заказчика для прогнозирования возможных неисправностей и принятие мер по их предотвращению. В более чем 60 % случаев для устранения неисправности достаточно дистанционной консультации в сервисной службе АББ, дальнейшего вмешательства не требуется.

    ABB offers a flexible choice of service agreements for both new and existing robot installations, which helps extend the mean time between failures, shorten the time to repair and lower the total cost of ownership. With four new packages available – Support, Response, Maintenance and Warranty, each backed up by ABB’s Remote Service technology – businesses can minimize the impact of unplanned downtime and achieve improved production-line efficiency.

    Компания АББ предлагает гибкий выбор контрактов на выполнение технического обслуживания как уже имеющихся, так и вновь устанавливаемых роботов, которые позволяют значительно увеличить среднюю наработку на отказ, сократить время ремонта и эксплуатационные расходы. Четыре новых пакета на основе технологии Remote Service Support, Response, Maintenance и Warranty – позволяют минимизировать внеплановые простои и значительно повысить эффективность производства.

    The benefits of Remote Sevice are clear: improved availability, fewer service visits, lower maintenance costs and maximized total cost of ownership. This unique service sets ABB apart from its competitors and is the beginning of a revolution in service thinking. It provides ABB with a great opportunity to improve customer access to its expertise and develop more advanced services worldwide.

    Преимущества дистанционного технического обслуживания очевидны: повышенная надежность, уменьшение выездов ремонтных бригад, уменьшение затрат на обслуживание и общих эксплуатационных расходов. Эта уникальная услуга дает компании АББ преимущества над конкурентами и демонстрирует революционный подход к организации сервиса. Благодаря ей компания АББ расширяет доступ заказчиков к опыту своих специалистов и получает возможность более эффективного оказания технической помощи по всему миру.

    Тематики

    • тех. обсл. и ремонт средств электросвязи

    Обобщающие термины

    EN

    Англо-русский словарь нормативно-технической терминологии > remote sevice

  • 7 Artificial Intelligence

       In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)
       Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)
       Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....
       When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)
       4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, Eventually
       Just as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)
       Many problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)
       What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)
       [AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)
       The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)
       9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract Form
       The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)
       There are many different kinds of reasoning one might imagine:
        Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."
        Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)
       Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)
       Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)
       The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)
        14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory Formation
       It is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)
       We might distinguish among four kinds of AI.
       Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.
       Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.
    ... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)
       Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)
        16) Determination of Relevance of Rules in Particular Contexts
       Even if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)
       Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)
        18) The Assumption That the Mind Is a Formal System
       Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)
        19) A Statement of the Primary and Secondary Purposes of Artificial Intelligence
       The primary goal of Artificial Intelligence is to make machines smarter.
       The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)
       The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....
       AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)
        21) Perceptual Structures Can Be Represented as Lists of Elementary Propositions
       In artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)
       Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)
       Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)
       The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)

    Historical dictionary of quotations in cognitive science > Artificial Intelligence

  • 8 let

    I 1. transitive verb,
    -tt-, let
    1) (allow to) lassen

    don't let things get you down/worry you — lass dich nicht entmutigen/mach dir keine Sorgen

    don't let him upset youreg dich seinetwegen nicht auf

    I'll come if you will let me — ich komme, wenn ich darf

    let somebody/something alone — jemanden/etwas in Ruhe lassen

    let alone(far less) geschweige denn

    let somebody bejemanden in Ruhe od. Frieden lassen

    let go [of] something/somebody — etwas/jemanden loslassen

    let somebody go(from captivity) jemanden freilassen

    let go(release hold) loslassen; (neglect) herunterkommen lassen [Haus]; (let pass) durchgehen lassen [Bemerkung]

    let it go [at that] — es dabei belassen od. bewenden lassen

    let oneself go (neglect oneself) sich vernachlässigen; (abandon self-restraint) sich gehen lassen

    2) (cause to)

    let somebody think that... — jemanden in dem Glauben lassen, dass...

    I will let you know as soon as... — ich gebe Ihnen Bescheid, sobald...

    3) (release) ablassen [Wasser] (out of, from aus); lassen [Luft] ( out of aus)
    4) (Brit.): (rent out) vermieten [Haus, Wohnung, Büro]; verpachten [Gelände, Grundstück]

    ‘to let’ — "zu vermieten"

    2. auxiliary verb,
    -tt-, let
    1) in exhortations lassen

    let us suppose that... — nehmen wir [nur] einmal an, dass...

    Let's go to the cinema. - Yes, let's/No, let's not or don't let's — Komm/Kommt, wir gehen ins Kino. - Ja, gut/Nein, lieber nicht

    2) in command, challenge lassen

    let them come in — sie sollen hereinkommen; lassen Sie sie herein

    never let it be said that... — keiner soll sagen, dass...

    [just] let him try! — das soll er [nur] mal wagen!

    3. noun
    (Brit.)
    Phrasal Verbs:
    - academic.ru/42535/let_down">let down
    II noun

    without let [or hindrance] — (formal/Law) ohne jede Behinderung

    * * *
    I [let] present participle - letting; verb
    1) (to allow or permit: She refused to let her children go out in the rain; Let me see your drawing.) lassen
    2) (to cause to: I will let you know how much it costs.) lassen
    3) (used for giving orders or suggestions: If they will not work, let them starve; Let's (= let us) leave right away!) lassen
    - let alone
    - let someone or something alone/be
    - let alone/be
    - let down
    - let fall
    - let go of
    - let go
    - let in
    - out
    - let in for
    - let in on
    - let off
    - let up
    - let well alone
    II [let] present participle - letting; verb
    (to give the use of (a house etc) in return for payment: He lets his house to visitors in the summer.) vermieten
    * * *
    let1
    [let]
    n
    1. SPORT Netzball m
    2. LAW
    without \let or hindrance ungehindert
    let2
    [let]
    I. n no pl esp BRIT Vermietung f; duration Mietfrist f
    to sign a five-year \let einen Mietvertrag für fünf Jahre unterschreiben
    to take sth on a \let etw mieten
    II. vt
    <-tt-, let, let>
    to \let sth/sb do sth etw/jdn etw tun lassen
    don't \let it worry you mach dir darüber [mal] keine Sorgen
    to \let one's hair grow sich dat die Haare [lang] wachsen lassen
    to \let one's shoes dry seine Schuhe trocknen lassen
    to \let sb alone [or ( fam) sb be] jdn in Ruhe [o Frieden] lassen
    \let him be! lass ihn in Ruhe!
    to \let sth alone (not touch) etw nicht anfassen; (not talk about) nicht über etw akk sprechen
    to \let sth alone [or rest] [or ( fam) be] (not pursue further) etw auf sich beruhen lassen
    sb \lets fall [or drop] [or slip] that... (unintentionally) es rutscht jdm heraus, dass...; (as if unintentionally) jd lässt so nebenbei die Bemerkung fallen, dass...
    to \let sb go (allow to depart) jdn gehen lassen; (release from grip) jdn loslassen [o SÜDD, ÖSTERR auslassen]; (from captivity) jdn freilassen [o fam laufen lassen]
    \let me go, you're hurting me! loslassen [o lass mich los], du tust mir weh!
    to \let sth go (neglect) etw vernachlässigen
    to \let sth go [or pass] etw durchgehen lassen
    to \let it go at that es dabei bewenden lassen
    to \let go [of sb/sth] ( also fig) [jdn/etw] loslassen [o SÜDD, ÖSTERR auslassen] a. fig
    \let go of my hand, you're hurting me! lass meine Hand los, du tust mir weh!
    to \let oneself go (give way to enthusiasm) aus sich dat herausgehen; (develop bad habits) sich akk gehenlassen
    2. (give permission)
    to \let sb do sth jdn etw tun lassen
    she wanted to go but her parents wouldn't \let her sie wollte gehen, aber ihre Eltern ließen sie nicht
    I'm \letting you stay up late just this once dieses eine Mal darfst du ausnahmsweise länger aufbleiben
    3. (make)
    to \let sb do sth jdn etw tun lassen
    to \let sb know sth jdn etw wissen lassen
    \let us know when you get there geben Sie uns Bescheid, wenn Sie dort ankommen
    \let me know if/why... lass mich wissen, wenn/warum...
    to \let it be known that... alle wissen lassen, dass...
    \let me/ \let's do sth lass mich/lass uns etw tun
    \let's go out to dinner! lass uns Essen gehen!, gehen wir essen!
    don't \let us argue lass uns nicht streiten
    \let's face it! sehen wir den Tatsachen ins Auge!
    \let's say he didn't think it was funny nehmen wir [mal] an, er fand es nicht lustig
    the British drink more tea than, \let's say, the German die Briten trinken mehr Tee als, sagen wir mal, die Deutschen
    \let us consider all the possibilities wollen wir einmal alle Möglichkeiten ins Auge fassen
    \let me/ \let's do sth lass mich/lass uns etw tun
    \let me/ \let's see,... also,...
    \let me think Moment [mal],..., lassen Sie mich [mal] nachdenken
    6. (expressing politeness)
    \let me/us... lassen Sie mich/uns zunächst einmal...
    \let me first ask you... erlauben Sie mir zunächst einmal die Frage...
    7. (making a threat)
    [don't] \let me do sth lass mich [bloß nicht] etw tun
    just \let me hear you say such a thing again and you'll be sorry! sag so etwas noch einmal und du wirst es [bitter] bereuen
    don't \let me catch you in here again! dass ich dich hier nicht noch einmal erwische!
    8. (expressing defiance)
    \let sb/sth do sth soll jd/etw doch etw tun
    \let them do what they like sollen sie doch machen, was sie wollen
    \let it rain von mir aus kann es ruhig regnen
    if he needs money, \let him earn it wenn er Geld braucht, soll er gefälligst arbeiten gehen
    \let there be no doubt about it! das möchte ich [doch] einmal klarstellen!
    to \let sb/sth... lasset...
    \let us pray lasset uns beten form
    \let there be light es werde Licht form
    10. MATH
    \let a equal 4 a ist gleich 4
    if we \let the angle x equal 70°... wenn der Winkel x gleich 70° ist,...
    11. esp BRIT, AUS (rent out)
    to \let sth etw vermieten
    “to \let” „zu vermieten“
    12.
    \let alone... geschweige denn...
    to \let it all hang out ( dated sl) über die Stränge schlagen fam
    to \let sb have it es jdm mal [ordentlich] geben fam
    to \let sth lie etw auf sich beruhen lassen
    to \let a matter lie for some time eine Angelegenheit eine Zeit lang ruhenlassen
    to \let fly [or rip] (sl) ausflippen sl
    to \let rip (do sth to extremes) es [mal so richtig] krachen lassen fam; (drive very fast) volle Pulle fahren fam, voll aufs Gas steigen ÖSTERR fam, Vollgas geben SCHWEIZ fam
    * * *
    I [let]
    n
    1) (TENNIS) Netz( ball m) nt
    2)
    II
    n

    they are looking for a let in this area — sie wollen eine Wohnung/ein Haus in dieser Gegend mieten

    III pret, ptp let
    vt
    1) (= permit) lassen

    she let me borrow the car — sie lieh mir das Auto, ich durfte ihr Auto nehmen

    he wants to but I won't let him —

    the particle wants to escape but the magnetic force won't let it — das Teilchen möchte sich frei machen, aber die magnetische Kraft verhindert es

    oh please let me — bitte, bitte, lass mich doch (mal)!

    to let sb/sth go, to let go of sb/sth — jdn/etw loslassen

    let me go! — lassen Sie mich los!, loslassen!

    See:
    drop, fly
    2) (old causative) lassen

    let the bells be rung let it be known by all citizens that... — lasset die Glocken ertönen (liter) allen Bürgern sei kundgetan, dass... (old)

    let it be known that... — alle sollen wissen, dass...

    3)

    to let sb/sth alone — jdn/etw in Ruhe lassen

    we can't improve it any more, we'd better let it alone —

    please let me by/past — bitte, lassen Sie mich vorbei/durch

    to let sb/sth through — jdn/etw durchlassen

    4)

    let's go home — komm, wir gehen nach Hause

    yes, let's — oh ja!

    it's late, but yes let's — es ist spät, aber na ja, einverstanden

    don't let's or let's not fight —

    let him try (it)!das soll er nur or mal versuchen!

    let me think or see, where did I put it? —

    let their need be never so great let there be musicmag ihre Not auch noch so groß sein lasst Musik erklingen

    let us suppose... — nehmen wir (mal) an, dass...

    See:
    equal
    5) (esp Brit: hire out) vermieten

    "to let" — "zu vermieten"

    we can't find a house to let — wir können kein Haus finden, das zu mieten ist

    6)
    * * *
    let1 [let]
    A s Br
    a) Vermieten n, Vermietung f
    b) Mietobjekt n:
    he is looking for a let in London er will in London eine Wohnung oder ein Haus mieten, er sucht in London eine Wohnung oder ein Haus
    c) umg Mieter(in):
    they can’t find a let for their flat
    B v/t prät und pperf let
    1. lassen, jemandem erlauben:
    let him talk lass ihn reden;
    let me help you lassen Sie sich (von mir) helfen;
    he let himself be deceived er ließ sich täuschen;
    let sb know jemanden wissen lassen, jemandem Bescheid geben;
    a) etwas sein lassen, die Finger lassen von,
    b) jemanden, etwas in Ruhe lassen;
    a) (her)einlassen in (akk),
    b) jemanden in ein Geheimnis einweihen,
    c) ein Stück Stoff etc einsetzen in (akk);
    let sb off a penalty jemandem eine Strafe erlassen;
    let sb off a promise jemanden von einem Versprechen entbinden;
    she didn’t let him umg sie ließ ihn nicht; let1 Bes Redew, severely 1, well1 D
    2. besonders Br vermieten, -pachten ( beide:
    to an akk;
    for auf ein Jahr etc):
    “to let” „zu vermieten“
    3. eine Arbeit etc vergeben (to an akk)
    C v/aux lassen, mögen, sollen (zur Umschreibung des Imperativs der 1. und 3. Person, von Befehlen etc):
    let us go! Yes, let’s! gehen wir! Ja, gehen wir! ( oder Ja, einverstanden!);
    let us pray lasset uns beten;
    let him go there at once! er soll sofort hingehen!;
    (just) let them try sie sollen es nur versuchen;
    let A be equal to B nehmen wir an, A ist gleich B
    D v/i
    1. besonders Br vermietet oder verpachtet werden (at, for für)
    2. sich gut etc vermieten oder verpachten lassen
    3. let into über jemanden herfallenBesondere Redewendungen: let alone
    a) geschweige denn, ganz zu schweigen von,
    b) let1 B 1;
    a) etwas sein lassen, die Finger lassen von,
    b) jemanden, etwas in Ruhe lassen;
    let drive at sb auf jemanden losschlagen oder -feuern;
    a) fallen lassen,
    b) fig eine Bemerkung etc fallen lassen,
    c) MATH eine Senkrechte fällen (on, upon auf akk);
    a) etwas abschießen,
    b) fig etwas loslassen, vom Stapel lassen,
    c) schießen (at auf akk),
    d) fig grob werden, vom Leder ziehen (at gegen);
    let go loslassen;
    let sth go, let go of sth etwas loslassen;
    let o.s. go
    a) sich gehen lassen,
    b) aus sich herausgehen;
    let it go at that lass es dabei bewenden;
    don’t let it go any further erzählen Sie es nicht weiter; loose A 1, slip1 B 1, etc
    let2 [let] s
    1. besonders Tennis: Let n, Netzaufschlag m:
    let! Netz!
    2. Hindernis n (obs außer in):
    without let or hindrance völlig unbehindert
    * * *
    I 1. transitive verb,
    -tt-, let
    1) (allow to) lassen

    don't let things get you down/worry you — lass dich nicht entmutigen/mach dir keine Sorgen

    I'll come if you will let me — ich komme, wenn ich darf

    let somebody/something alone — jemanden/etwas in Ruhe lassen

    let alone (far less) geschweige denn

    let somebody bejemanden in Ruhe od. Frieden lassen

    let go [of] something/somebody — etwas/jemanden loslassen

    let somebody go (from captivity) jemanden freilassen

    let go (release hold) loslassen; (neglect) herunterkommen lassen [Haus]; (let pass) durchgehen lassen [Bemerkung]

    let it go [at that] — es dabei belassen od. bewenden lassen

    let oneself go (neglect oneself) sich vernachlässigen; (abandon self-restraint) sich gehen lassen

    let somebody think that... — jemanden in dem Glauben lassen, dass...

    I will let you know as soon as... — ich gebe Ihnen Bescheid, sobald...

    3) (release) ablassen [Wasser] (out of, from aus); lassen [Luft] ( out of aus)
    4) (Brit.): (rent out) vermieten [Haus, Wohnung, Büro]; verpachten [Gelände, Grundstück]

    ‘to let’ — "zu vermieten"

    2. auxiliary verb,
    -tt-, let
    1) in exhortations lassen

    let us suppose that... — nehmen wir [nur] einmal an, dass...

    Let's go to the cinema. - Yes, let's/No, let's not or don't let's — Komm/Kommt, wir gehen ins Kino. - Ja, gut/Nein, lieber nicht

    2) in command, challenge lassen

    let them come in — sie sollen hereinkommen; lassen Sie sie herein

    never let it be said that... — keiner soll sagen, dass...

    [just] let him try! — das soll er [nur] mal wagen!

    3. noun
    (Brit.)
    Phrasal Verbs:
    II noun

    without let [or hindrance] — (formal/Law) ohne jede Behinderung

    * * *
    v.
    (§ p.,p.p.: let)
    = erlauben v.
    lassen v.
    (§ p.,pp.: ließ, gelassen)
    vermieten v.
    zulassen v.

    English-german dictionary > let

  • 9 Historical Portugal

       Before Romans described western Iberia or Hispania as "Lusitania," ancient Iberians inhabited the land. Phoenician and Greek trading settlements grew up in the Tagus estuary area and nearby coasts. Beginning around 202 BCE, Romans invaded what is today southern Portugal. With Rome's defeat of Carthage, Romans proceeded to conquer and rule the western region north of the Tagus, which they named Roman "Lusitania." In the fourth century CE, as Rome's rule weakened, the area experienced yet another invasion—Germanic tribes, principally the Suevi, who eventually were Christianized. During the sixth century CE, the Suevi kingdom was superseded by yet another Germanic tribe—the Christian Visigoths.
       A major turning point in Portugal's history came in 711, as Muslim armies from North Africa, consisting of both Arab and Berber elements, invaded the Iberian Peninsula from across the Straits of Gibraltar. They entered what is now Portugal in 714, and proceeded to conquer most of the country except for the far north. For the next half a millennium, Islam and Muslim presence in Portugal left a significant mark upon the politics, government, language, and culture of the country.
       Islam, Reconquest, and Portugal Created, 714-1140
       The long frontier struggle between Muslim invaders and Christian communities in the north of the Iberian peninsula was called the Reconquista (Reconquest). It was during this struggle that the first dynasty of Portuguese kings (Burgundian) emerged and the independent monarchy of Portugal was established. Christian forces moved south from what is now the extreme north of Portugal and gradually defeated Muslim forces, besieging and capturing towns under Muslim sway. In the ninth century, as Christian forces slowly made their way southward, Christian elements were dominant only in the area between Minho province and the Douro River; this region became known as "territorium Portu-calense."
       In the 11th century, the advance of the Reconquest quickened as local Christian armies were reinforced by crusading knights from what is now France and England. Christian forces took Montemor (1034), at the Mondego River; Lamego (1058); Viseu (1058); and Coimbra (1064). In 1095, the king of Castile and Léon granted the country of "Portu-cale," what became northern Portugal, to a Burgundian count who had emigrated from France. This was the foundation of Portugal. In 1139, a descendant of this count, Afonso Henriques, proclaimed himself "King of Portugal." He was Portugal's first monarch, the "Founder," and the first of the Burgundian dynasty, which ruled until 1385.
       The emergence of Portugal in the 12th century as a separate monarchy in Iberia occurred before the Christian Reconquest of the peninsula. In the 1140s, the pope in Rome recognized Afonso Henriques as king of Portugal. In 1147, after a long, bloody siege, Muslim-occupied Lisbon fell to Afonso Henriques's army. Lisbon was the greatest prize of the 500-year war. Assisting this effort were English crusaders on their way to the Holy Land; the first bishop of Lisbon was an Englishman. When the Portuguese captured Faro and Silves in the Algarve province in 1248-50, the Reconquest of the extreme western portion of the Iberian peninsula was complete—significantly, more than two centuries before the Spanish crown completed the Reconquest of the eastern portion by capturing Granada in 1492.
       Consolidation and Independence of Burgundian Portugal, 1140-1385
       Two main themes of Portugal's early existence as a monarchy are the consolidation of control over the realm and the defeat of a Castil-ian threat from the east to its independence. At the end of this period came the birth of a new royal dynasty (Aviz), which prepared to carry the Christian Reconquest beyond continental Portugal across the straits of Gibraltar to North Africa. There was a variety of motives behind these developments. Portugal's independent existence was imperiled by threats from neighboring Iberian kingdoms to the north and east. Politics were dominated not only by efforts against the Muslims in
       Portugal (until 1250) and in nearby southern Spain (until 1492), but also by internecine warfare among the kingdoms of Castile, Léon, Aragon, and Portugal. A final comeback of Muslim forces was defeated at the battle of Salado (1340) by allied Castilian and Portuguese forces. In the emerging Kingdom of Portugal, the monarch gradually gained power over and neutralized the nobility and the Church.
       The historic and commonplace Portuguese saying "From Spain, neither a good wind nor a good marriage" was literally played out in diplomacy and war in the late 14th-century struggles for mastery in the peninsula. Larger, more populous Castile was pitted against smaller Portugal. Castile's Juan I intended to force a union between Castile and Portugal during this era of confusion and conflict. In late 1383, Portugal's King Fernando, the last king of the Burgundian dynasty, suddenly died prematurely at age 38, and the Master of Aviz, Portugal's most powerful nobleman, took up the cause of independence and resistance against Castile's invasion. The Master of Aviz, who became King João I of Portugal, was able to obtain foreign assistance. With the aid of English archers, Joao's armies defeated the Castilians in the crucial battle of Aljubarrota, on 14 August 1385, a victory that assured the independence of the Portuguese monarchy from its Castilian nemesis for several centuries.
       Aviz Dynasty and Portugal's First Overseas Empire, 1385-1580
       The results of the victory at Aljubarrota, much celebrated in Portugal's art and monuments, and the rise of the Aviz dynasty also helped to establish a new merchant class in Lisbon and Oporto, Portugal's second city. This group supported King João I's program of carrying the Reconquest to North Africa, since it was interested in expanding Portugal's foreign commerce and tapping into Muslim trade routes and resources in Africa. With the Reconquest against the Muslims completed in Portugal and the threat from Castile thwarted for the moment, the Aviz dynasty launched an era of overseas conquest, exploration, and trade. These efforts dominated Portugal's 15th and 16th centuries.
       The overseas empire and age of Discoveries began with Portugal's bold conquest in 1415 of the Moroccan city of Ceuta. One royal member of the 1415 expedition was young, 21-year-old Prince Henry, later known in history as "Prince Henry the Navigator." His part in the capture of Ceuta won Henry his knighthood and began Portugal's "Marvelous Century," during which the small kingdom was counted as a European and world power of consequence. Henry was the son of King João I and his English queen, Philippa of Lancaster, but he did not inherit the throne. Instead, he spent most of his life and his fortune, and that of the wealthy military Order of Christ, on various imperial ventures and on voyages of exploration down the African coast and into the Atlantic. While mythology has surrounded Henry's controversial role in the Discoveries, and this role has been exaggerated, there is no doubt that he played a vital part in the initiation of Portugal's first overseas empire and in encouraging exploration. He was naturally curious, had a sense of mission for Portugal, and was a strong leader. He also had wealth to expend; at least a third of the African voyages of the time were under his sponsorship. If Prince Henry himself knew little science, significant scientific advances in navigation were made in his day.
       What were Portugal's motives for this new imperial effort? The well-worn historical cliche of "God, Glory, and Gold" can only partly explain the motivation of a small kingdom with few natural resources and barely 1 million people, which was greatly outnumbered by the other powers it confronted. Among Portuguese objectives were the desire to exploit known North African trade routes and resources (gold, wheat, leather, weaponry, and other goods that were scarce in Iberia); the need to outflank the Muslim world in the Mediterranean by sailing around Africa, attacking Muslims en route; and the wish to ally with Christian kingdoms beyond Africa. This enterprise also involved a strategy of breaking the Venetian spice monopoly by trading directly with the East by means of discovering and exploiting a sea route around Africa to Asia. Besides the commercial motives, Portugal nurtured a strong crusading sense of Christian mission, and various classes in the kingdom saw an opportunity for fame and gain.
       By the time of Prince Henry's death in 1460, Portugal had gained control of the Atlantic archipelagos of the Azores and Madeiras, begun to colonize the Cape Verde Islands, failed to conquer the Canary Islands from Castile, captured various cities on Morocco's coast, and explored as far as Senegal, West Africa, down the African coast. By 1488, Bar-tolomeu Dias had rounded the Cape of Good Hope in South Africa and thereby discovered the way to the Indian Ocean.
       Portugal's largely coastal African empire and later its fragile Asian empire brought unexpected wealth but were purchased at a high price. Costs included wars of conquest and defense against rival powers, manning the far-flung navel and trade fleets and scattered castle-fortresses, and staffing its small but fierce armies, all of which entailed a loss of skills and population to maintain a scattered empire. Always short of capital, the monarchy became indebted to bankers. There were many defeats beginning in the 16th century at the hands of the larger imperial European monarchies (Spain, France, England, and Holland) and many attacks on Portugal and its strung-out empire. Typically, there was also the conflict that arose when a tenuously held world empire that rarely if ever paid its way demanded finance and manpower Portugal itself lacked.
       The first 80 years of the glorious imperial era, the golden age of Portugal's imperial power and world influence, was an African phase. During 1415-88, Portuguese navigators and explorers in small ships, some of them caravelas (caravels), explored the treacherous, disease-ridden coasts of Africa from Morocco to South Africa beyond the Cape of Good Hope. By the 1470s, the Portuguese had reached the Gulf of Guinea and, in the early 1480s, what is now Angola. Bartolomeu Dias's extraordinary voyage of 1487-88 to South Africa's coast and the edge of the Indian Ocean convinced Portugal that the best route to Asia's spices and Christians lay south, around the tip of southern Africa. Between 1488 and 1495, there was a hiatus caused in part by domestic conflict in Portugal, discussion of resources available for further conquests beyond Africa in Asia, and serious questions as to Portugal's capacity to reach beyond Africa. In 1495, King Manuel and his council decided to strike for Asia, whatever the consequences. In 1497-99, Vasco da Gama, under royal orders, made the epic two-year voyage that discovered the sea route to western India (Asia), outflanked Islam and Venice, and began Portugal's Asian empire. Within 50 years, Portugal had discovered and begun the exploitation of its largest colony, Brazil, and set up forts and trading posts from the Middle East (Aden and Ormuz), India (Calicut, Goa, etc.), Malacca, and Indonesia to Macau in China.
       By the 1550s, parts of its largely coastal, maritime trading post empire from Morocco to the Moluccas were under siege from various hostile forces, including Muslims, Christians, and Hindi. Although Moroccan forces expelled the Portuguese from the major coastal cities by 1550, the rival European monarchies of Castile (Spain), England, France, and later Holland began to seize portions of her undermanned, outgunned maritime empire.
       In 1580, Phillip II of Spain, whose mother was a Portuguese princess and who had a strong claim to the Portuguese throne, invaded Portugal, claimed the throne, and assumed control over the realm and, by extension, its African, Asian, and American empires. Phillip II filled the power vacuum that appeared in Portugal following the loss of most of Portugal's army and its young, headstrong King Sebastião in a disastrous war in Morocco. Sebastiao's death in battle (1578) and the lack of a natural heir to succeed him, as well as the weak leadership of the cardinal who briefly assumed control in Lisbon, led to a crisis that Spain's strong monarch exploited. As a result, Portugal lost its independence to Spain for a period of 60 years.
       Portugal under Spanish Rule, 1580-1640
       Despite the disastrous nature of Portugal's experience under Spanish rule, "The Babylonian Captivity" gave birth to modern Portuguese nationalism, its second overseas empire, and its modern alliance system with England. Although Spain allowed Portugal's weakened empire some autonomy, Spanish rule in Portugal became increasingly burdensome and unacceptable. Spain's ambitious imperial efforts in Europe and overseas had an impact on the Portuguese as Spain made greater and greater demands on its smaller neighbor for manpower and money. Portugal's culture underwent a controversial Castilianization, while its empire became hostage to Spain's fortunes. New rival powers England, France, and Holland attacked and took parts of Spain's empire and at the same time attacked Portugal's empire, as well as the mother country.
       Portugal's empire bore the consequences of being attacked by Spain's bitter enemies in what was a form of world war. Portuguese losses were heavy. By 1640, Portugal had lost most of its Moroccan cities as well as Ceylon, the Moluccas, and sections of India. With this, Portugal's Asian empire was gravely weakened. Only Goa, Damão, Diu, Bombay, Timor, and Macau remained and, in Brazil, Dutch forces occupied the northeast.
       On 1 December 1640, long commemorated as a national holiday, Portuguese rebels led by the duke of Braganza overthrew Spanish domination and took advantage of Spanish weakness following a more serious rebellion in Catalonia. Portugal regained independence from Spain, but at a price: dependence on foreign assistance to maintain its independence in the form of the renewal of the alliance with England.
       Restoration and Second Empire, 1640-1822
       Foreign affairs and empire dominated the restoration era and aftermath, and Portugal again briefly enjoyed greater European power and prestige. The Anglo-Portuguese Alliance was renewed and strengthened in treaties of 1642, 1654, and 1661, and Portugal's independence from Spain was underwritten by English pledges and armed assistance. In a Luso-Spanish treaty of 1668, Spain recognized Portugal's independence. Portugal's alliance with England was a marriage of convenience and necessity between two monarchies with important religious, cultural, and social differences. In return for legal, diplomatic, and trade privileges, as well as the use during war and peace of Portugal's great Lisbon harbor and colonial ports for England's navy, England pledged to protect Portugal and its scattered empire from any attack. The previously cited 17th-century alliance treaties were renewed later in the Treaty of Windsor, signed in London in 1899. On at least 10 different occasions after 1640, and during the next two centuries, England was central in helping prevent or repel foreign invasions of its ally, Portugal.
       Portugal's second empire (1640-1822) was largely Brazil-oriented. Portuguese colonization, exploitation of wealth, and emigration focused on Portuguese America, and imperial revenues came chiefly from Brazil. Between 1670 and 1740, Portugal's royalty and nobility grew wealthier on funds derived from Brazilian gold, diamonds, sugar, tobacco, and other crops, an enterprise supported by the Atlantic slave trade and the supply of African slave labor from West Africa and Angola. Visitors today can see where much of that wealth was invested: Portugal's rich legacy of monumental architecture. Meanwhile, the African slave trade took a toll in Angola and West Africa.
       In continental Portugal, absolutist monarchy dominated politics and government, and there was a struggle for position and power between the monarchy and other institutions, such as the Church and nobility. King José I's chief minister, usually known in history as the marquis of Pombal (ruled 1750-77), sharply suppressed the nobility and the
       Church (including the Inquisition, now a weak institution) and expelled the Jesuits. Pombal also made an effort to reduce economic dependence on England, Portugal's oldest ally. But his successes did not last much beyond his disputed time in office.
       Beginning in the late 18th century, the European-wide impact of the French Revolution and the rise of Napoleon placed Portugal in a vulnerable position. With the monarchy ineffectively led by an insane queen (Maria I) and her indecisive regent son (João VI), Portugal again became the focus of foreign ambition and aggression. With England unable to provide decisive assistance in time, France—with Spain's consent—invaded Portugal in 1807. As Napoleon's army under General Junot entered Lisbon meeting no resistance, Portugal's royal family fled on a British fleet to Brazil, where it remained in exile until 1821. In the meantime, Portugal's overseas empire was again under threat. There was a power vacuum as the monarch was absent, foreign armies were present, and new political notions of liberalism and constitutional monarchy were exciting various groups of citizens.
       Again England came to the rescue, this time in the form of the armies of the duke of Wellington. Three successive French invasions of Portugal were defeated and expelled, and Wellington succeeded in carrying the war against Napoleon across the Portuguese frontier into Spain. The presence of the English army, the new French-born liberal ideas, and the political vacuum combined to create revolutionary conditions. The French invasions and the peninsular wars, where Portuguese armed forces played a key role, marked the beginning of a new era in politics.
       Liberalism and Constitutional Monarchy, 1822-1910
       During 1807-22, foreign invasions, war, and civil strife over conflicting political ideas gravely damaged Portugal's commerce, economy, and novice industry. The next terrible blow was the loss of Brazil in 1822, the jewel in the imperial crown. Portugal's very independence seemed to be at risk. In vain, Portugal sought to resist Brazilian independence by force, but in 1825 it formally acknowledged Brazilian independence by treaty.
       Portugal's slow recovery from the destructive French invasions and the "war of independence" was complicated by civil strife over the form of constitutional monarchy that best suited Portugal. After struggles over these issues between 1820 and 1834, Portugal settled somewhat uncertainly into a moderate constitutional monarchy whose constitution (Charter of 1826) lent it strong political powers to exert a moderating influence between the executive and legislative branches of the government. It also featured a new upper middle class based on land ownership and commerce; a Catholic Church that, although still important, lived with reduced privileges and property; a largely African (third) empire to which Lisbon and Oporto devoted increasing spiritual and material resources, starting with the liberal imperial plans of 1836 and 1851, and continuing with the work of institutions like the Lisbon Society of Geography (established 1875); and a mass of rural peasants whose bonds to the land weakened after 1850 and who began to immigrate in increasing numbers to Brazil and North America.
       Chronic military intervention in national politics began in 19th-century Portugal. Such intervention, usually commencing with coups or pronunciamentos (military revolts), was a shortcut to the spoils of political office and could reflect popular discontent as well as the power of personalities. An early example of this was the 1817 golpe (coup) attempt of General Gomes Freire against British military rule in Portugal before the return of King João VI from Brazil. Except for a more stable period from 1851 to 1880, military intervention in politics, or the threat thereof, became a feature of the constitutional monarchy's political life, and it continued into the First Republic and the subsequent Estado Novo.
       Beginning with the Regeneration period (1851-80), Portugal experienced greater political stability and economic progress. Military intervention in politics virtually ceased; industrialization and construction of railroads, roads, and bridges proceeded; two political parties (Regenerators and Historicals) worked out a system of rotation in power; and leading intellectuals sparked a cultural revival in several fields. In 19th-century literature, there was a new golden age led by such figures as Alexandre Herculano (historian), Eça de Queirós (novelist), Almeida Garrett (playwright and essayist), Antero de Quental (poet), and Joaquim Oliveira Martins (historian and social scientist). In its third overseas empire, Portugal attempted to replace the slave trade and slavery with legitimate economic activities; to reform the administration; and to expand Portuguese holdings beyond coastal footholds deep into the African hinterlands in West, West Central, and East Africa. After 1841, to some extent, and especially after 1870, colonial affairs, combined with intense nationalism, pressures for economic profit in Africa, sentiment for national revival, and the drift of European affairs would make or break Lisbon governments.
       Beginning with the political crisis that arose out of the "English Ultimatum" affair of January 1890, the monarchy became discredtted and identified with the poorly functioning government, political parties splintered, and republicanism found more supporters. Portugal participated in the "Scramble for Africa," expanding its African holdings, but failed to annex territory connecting Angola and Mozambique. A growing foreign debt and state bankruptcy as of the early 1890s damaged the constitutional monarchy's reputation, despite the efforts of King Carlos in diplomacy, the renewal of the alliance in the Windsor Treaty of 1899, and the successful if bloody colonial wars in the empire (1880-97). Republicanism proclaimed that Portugal's weak economy and poor society were due to two historic institutions: the monarchy and the Catholic Church. A republic, its stalwarts claimed, would bring greater individual liberty; efficient, if more decentralized government; and a stronger colonial program while stripping the Church of its role in both society and education.
       As the monarchy lost support and republicans became more aggressive, violence increased in politics. King Carlos I and his heir Luís were murdered in Lisbon by anarchist-republicans on 1 February 1908. Following a military and civil insurrection and fighting between monarchist and republican forces, on 5 October 1910, King Manuel II fled Portugal and a republic was proclaimed.
       First Parliamentary Republic, 1910-26
       Portugal's first attempt at republican government was the most unstable, turbulent parliamentary republic in the history of 20th-century Western Europe. During a little under 16 years of the republic, there were 45 governments, a number of legislatures that did not complete normal terms, military coups, and only one president who completed his four-year term in office. Portuguese society was poorly prepared for this political experiment. Among the deadly legacies of the monarchy were a huge public debt; a largely rural, apolitical, and illiterate peasant population; conflict over the causes of the country's misfortunes; and lack of experience with a pluralist, democratic system.
       The republic had some talented leadership but lacked popular, institutional, and economic support. The 1911 republican constitution established only a limited democracy, as only a small portion of the adult male citizenry was eligible to vote. In a country where the majority was Catholic, the republic passed harshly anticlerical laws, and its institutions and supporters persecuted both the Church and its adherents. During its brief disjointed life, the First Republic drafted important reform plans in economic, social, and educational affairs; actively promoted development in the empire; and pursued a liberal, generous foreign policy. Following British requests for Portugal's assistance in World War I, Portugal entered the war on the Allied side in March 1916 and sent armies to Flanders and Portuguese Africa. Portugal's intervention in that conflict, however, was too costly in many respects, and the ultimate failure of the republic in part may be ascribed to Portugal's World War I activities.
       Unfortunately for the republic, its time coincided with new threats to Portugal's African possessions: World War I, social and political demands from various classes that could not be reconciled, excessive military intervention in politics, and, in particular, the worst economic and financial crisis Portugal had experienced since the 16th and 17th centuries. After the original Portuguese Republican Party (PRP, also known as the "Democrats") splintered into three warring groups in 1912, no true multiparty system emerged. The Democrats, except for only one or two elections, held an iron monopoly of electoral power, and political corruption became a major issue. As extreme right-wing dictatorships elsewhere in Europe began to take power in Italy (1922), neighboring Spain (1923), and Greece (1925), what scant popular support remained for the republic collapsed. Backed by a right-wing coalition of landowners from Alentejo, clergy, Coimbra University faculty and students, Catholic organizations, and big business, career military officers led by General Gomes da Costa executed a coup on 28 May 1926, turned out the last republican government, and established a military government.
       The Estado Novo (New State), 1926-74
       During the military phase (1926-32) of the Estado Novo, professional military officers, largely from the army, governed and administered Portugal and held key cabinet posts, but soon discovered that the military possessed no magic formula that could readily solve the problems inherited from the First Republic. Especially during the years 1926-31, the military dictatorship, even with its political repression of republican activities and institutions (military censorship of the press, political police action, and closure of the republic's rowdy parliament), was characterized by similar weaknesses: personalism and factionalism; military coups and political instability, including civil strife and loss of life; state debt and bankruptcy; and a weak economy. "Barracks parliamentarism" was not an acceptable alternative even to the "Nightmare Republic."
       Led by General Óscar Carmona, who had replaced and sent into exile General Gomes da Costa, the military dictatorship turned to a civilian expert in finance and economics to break the budget impasse and bring coherence to the disorganized system. Appointed minister of finance on 27 April 1928, the Coimbra University Law School professor of economics Antônio de Oliveira Salazar (1889-1970) first reformed finance, helped balance the budget, and then turned to other concerns as he garnered extraordinary governing powers. In 1930, he was appointed interim head of another key ministry (Colonies) and within a few years had become, in effect, a civilian dictator who, with the military hierarchy's support, provided the government with coherence, a program, and a set of policies.
       For nearly 40 years after he was appointed the first civilian prime minister in 1932, Salazar's personality dominated the government. Unlike extreme right-wing dictators elsewhere in Europe, Salazar was directly appointed by the army but was never endorsed by a popular political party, street militia, or voter base. The scholarly, reclusive former Coimbra University professor built up what became known after 1932 as the Estado Novo ("New State"), which at the time of its overthrow by another military coup in 1974, was the longest surviving authoritarian regime in Western Europe. The system of Salazar and the largely academic and technocratic ruling group he gathered in his cabinets was based on the central bureaucracy of the state, which was supported by the president of the republic—always a senior career military officer, General Óscar Carmona (1928-51), General Craveiro Lopes (1951-58), and Admiral Américo Tómaz (1958-74)—and the complicity of various institutions. These included a rubber-stamp legislature called the National Assembly (1935-74) and a political police known under various names: PVDE (1932-45), PIDE (1945-69),
       and DGS (1969-74). Other defenders of the Estado Novo security were paramilitary organizations such as the National Republican Guard (GNR); the Portuguese Legion (PL); and the Portuguese Youth [Movement]. In addition to censorship of the media, theater, and books, there was political repression and a deliberate policy of depoliticization. All political parties except for the approved movement of regime loyalists, the União Nacional or (National Union), were banned.
       The most vigorous and more popular period of the New State was 1932-44, when the basic structures were established. Never monolithic or entirely the work of one person (Salazar), the New State was constructed with the assistance of several dozen top associates who were mainly academics from law schools, some technocrats with specialized skills, and a handful of trusted career military officers. The 1933 Constitution declared Portugal to be a "unitary, corporative Republic," and pressures to restore the monarchy were resisted. Although some of the regime's followers were fascists and pseudofascists, many more were conservative Catholics, integralists, nationalists, and monarchists of different varieties, and even some reactionary republicans. If the New State was authoritarian, it was not totalitarian and, unlike fascism in Benito Mussolini's Italy or Adolf Hitler's Germany, it usually employed the minimum of violence necessary to defeat what remained a largely fractious, incoherent opposition.
       With the tumultuous Second Republic and the subsequent civil war in nearby Spain, the regime felt threatened and reinforced its defenses. During what Salazar rightly perceived as a time of foreign policy crisis for Portugal (1936-45), he assumed control of the Ministry of Foreign Affairs. From there, he pursued four basic foreign policy objectives: supporting the Nationalist rebels of General Francisco Franco in the Spanish Civil War (1936-39) and concluding defense treaties with a triumphant Franco; ensuring that General Franco in an exhausted Spain did not enter World War II on the Axis side; maintaining Portuguese neutrality in World War II with a post-1942 tilt toward the Allies, including granting Britain and the United States use of bases in the Azores Islands; and preserving and protecting Portugal's Atlantic Islands and its extensive, if poor, overseas empire in Africa and Asia.
       During the middle years of the New State (1944-58), many key Salazar associates in government either died or resigned, and there was greater social unrest in the form of unprecedented strikes and clandestine Communist activities, intensified opposition, and new threatening international pressures on Portugal's overseas empire. During the earlier phase of the Cold War (1947-60), Portugal became a steadfast, if weak, member of the US-dominated North Atlantic Treaty Organization alliance and, in 1955, with American support, Portugal joined the United Nations (UN). Colonial affairs remained a central concern of the regime. As of 1939, Portugal was the third largest colonial power in the world and possessed territories in tropical Africa (Angola, Mozambique, Guinea-Bissau, and São Tomé and Príncipe Islands) and the remnants of its 16th-century empire in Asia (Goa, Damão, Diu, East Timor, and Macau). Beginning in the early 1950s, following the independence of India in 1947, Portugal resisted Indian pressures to decolonize Portuguese India and used police forces to discourage internal opposition in its Asian and African colonies.
       The later years of the New State (1958-68) witnessed the aging of the increasingly isolated but feared Salazar and new threats both at home and overseas. Although the regime easily overcame the brief oppositionist threat from rival presidential candidate General Humberto Delgado in the spring of 1958, new developments in the African and Asian empires imperiled the authoritarian system. In February 1961, oppositionists hijacked the Portuguese ocean liner Santa Maria and, in following weeks, African insurgents in northern Angola, although they failed to expel the Portuguese, gained worldwide media attention, discredited the New State, and began the 13-year colonial war. After thwarting a dissident military coup against his continued leadership, Salazar and his ruling group mobilized military repression in Angola and attempted to develop the African colonies at a faster pace in order to ensure Portuguese control. Meanwhile, the other European colonial powers (Britain, France, Belgium, and Spain) rapidly granted political independence to their African territories.
       At the time of Salazar's removal from power in September 1968, following a stroke, Portugal's efforts to maintain control over its colonies appeared to be successful. President Americo Tomás appointed Dr. Marcello Caetano as Salazar's successor as prime minister. While maintaining the New State's basic structures, and continuing the regime's essential colonial policy, Caetano attempted wider reforms in colonial administration and some devolution of power from Lisbon, as well as more freedom of expression in Lisbon. Still, a great deal of the budget was devoted to supporting the wars against the insurgencies in Africa. Meanwhile in Asia, Portuguese India had fallen when the Indian army invaded in December 1961. The loss of Goa was a psychological blow to the leadership of the New State, and of the Asian empire only East Timor and Macau remained.
       The Caetano years (1968-74) were but a hiatus between the waning Salazar era and a new regime. There was greater political freedom and rapid economic growth (5-6 percent annually to late 1973), but Caetano's government was unable to reform the old system thoroughly and refused to consider new methods either at home or in the empire. In the end, regime change came from junior officers of the professional military who organized the Armed Forces Movement (MFA) against the Caetano government. It was this group of several hundred officers, mainly in the army and navy, which engineered a largely bloodless coup in Lisbon on 25 April 1974. Their unexpected action brought down the 48-year-old New State and made possible the eventual establishment and consolidation of democratic governance in Portugal, as well as a reorientation of the country away from the Atlantic toward Europe.
       Revolution of Carnations, 1974-76
       Following successful military operations of the Armed Forces Movement against the Caetano government, Portugal experienced what became known as the "Revolution of Carnations." It so happened that during the rainy week of the military golpe, Lisbon flower shops were featuring carnations, and the revolutionaries and their supporters adopted the red carnation as the common symbol of the event, as well as of the new freedom from dictatorship. The MFA, whose leaders at first were mostly little-known majors and captains, proclaimed a three-fold program of change for the new Portugal: democracy; decolonization of the overseas empire, after ending the colonial wars; and developing a backward economy in the spirit of opportunity and equality. During the first 24 months after the coup, there was civil strife, some anarchy, and a power struggle. With the passing of the Estado Novo, public euphoria burst forth as the new provisional military government proclaimed the freedoms of speech, press, and assembly, and abolished censorship, the political police, the Portuguese Legion, Portuguese Youth, and other New State organizations, including the National Union. Scores of political parties were born and joined the senior political party, the Portuguese Community Party (PCP), and the Socialist Party (PS), founded shortly before the coup.
       Portugal's Revolution of Carnations went through several phases. There was an attempt to take control by radical leftists, including the PCP and its allies. This was thwarted by moderate officers in the army, as well as by the efforts of two political parties: the PS and the Social Democrats (PPD, later PSD). The first phase was from April to September 1974. Provisional president General Antonio Spínola, whose 1974 book Portugal and the Future had helped prepare public opinion for the coup, met irresistible leftist pressures. After Spinola's efforts to avoid rapid decolonization of the African empire failed, he resigned in September 1974. During the second phase, from September 1974 to March 1975, radical military officers gained control, but a coup attempt by General Spínola and his supporters in Lisbon in March 1975 failed and Spínola fled to Spain.
       In the third phase of the Revolution, March-November 1975, a strong leftist reaction followed. Farm workers occupied and "nationalized" 1.1 million hectares of farmland in the Alentejo province, and radical military officers in the provisional government ordered the nationalization of Portuguese banks (foreign banks were exempted), utilities, and major industries, or about 60 percent of the economic system. There were power struggles among various political parties — a total of 50 emerged—and in the streets there was civil strife among labor, military, and law enforcement groups. A constituent assembly, elected on 25 April 1975, in Portugal's first free elections since 1926, drafted a democratic constitution. The Council of the Revolution (CR), briefly a revolutionary military watchdog committee, was entrenched as part of the government under the constitution, until a later revision. During the chaotic year of 1975, about 30 persons were killed in political frays while unstable provisional governments came and went. On 25 November 1975, moderate military forces led by Colonel Ramalho Eanes, who later was twice elected president of the republic (1976 and 1981), defeated radical, leftist military groups' revolutionary conspiracies.
       In the meantime, Portugal's scattered overseas empire experienced a precipitous and unprepared decolonization. One by one, the former colonies were granted and accepted independence—Guinea-Bissau (September 1974), Cape Verde Islands (July 1975), and Mozambique (July 1975). Portugal offered to turn over Macau to the People's Republic of China, but the offer was refused then and later negotiations led to the establishment of a formal decolonization or hand-over date of 1999. But in two former colonies, the process of decolonization had tragic results.
       In Angola, decolonization negotiations were greatly complicated by the fact that there were three rival nationalist movements in a struggle for power. The January 1975 Alvor Agreement signed by Portugal and these three parties was not effectively implemented. A bloody civil war broke out in Angola in the spring of 1975 and, when Portuguese armed forces withdrew and declared that Angola was independent on 11 November 1975, the bloodshed only increased. Meanwhile, most of the white Portuguese settlers from Angola and Mozambique fled during the course of 1975. Together with African refugees, more than 600,000 of these retornados ("returned ones") went by ship and air to Portugal and thousands more to Namibia, South Africa, Brazil, Canada, and the United States.
       The second major decolonization disaster was in Portugal's colony of East Timor in the Indonesian archipelago. Portugal's capacity to supervise and control a peaceful transition to independence in this isolated, neglected colony was limited by the strength of giant Indonesia, distance from Lisbon, and Portugal's revolutionary disorder and inability to defend Timor. In early December 1975, before Portugal granted formal independence and as one party, FRETILIN, unilaterally declared East Timor's independence, Indonesia's armed forces invaded, conquered, and annexed East Timor. Indonesian occupation encountered East Timorese resistance, and a heavy loss of life followed. The East Timor question remained a contentious international issue in the UN, as well as in Lisbon and Jakarta, for more than 20 years following Indonesia's invasion and annexation of the former colony of Portugal. Major changes occurred, beginning in 1998, after Indonesia underwent a political revolution and allowed a referendum in East Timor to decide that territory's political future in August 1999. Most East Timorese chose independence, but Indonesian forces resisted that verdict until
       UN intervention in September 1999. Following UN rule for several years, East Timor attained full independence on 20 May 2002.
       Consolidation of Democracy, 1976-2000
       After several free elections and record voter turnouts between 25 April 1975 and June 1976, civil war was averted and Portugal's second democratic republic began to stabilize. The MFA was dissolved, the military were returned to the barracks, and increasingly elected civilians took over the government of the country. The 1976 Constitution was revised several times beginning in 1982 and 1989, in order to reempha-size the principle of free enterprise in the economy while much of the large, nationalized sector was privatized. In June 1976, General Ram-alho Eanes was elected the first constitutional president of the republic (five-year term), and he appointed socialist leader Dr. Mário Soares as prime minister of the first constitutional government.
       From 1976 to 1985, Portugal's new system featured a weak economy and finances, labor unrest, and administrative and political instability. The difficult consolidation of democratic governance was eased in part by the strong currency and gold reserves inherited from the Estado Novo, but Lisbon seemed unable to cope with high unemployment, new debt, the complex impact of the refugees from Africa, world recession, and the agitation of political parties. Four major parties emerged from the maelstrom of 1974-75, except for the Communist Party, all newly founded. They were, from left to right, the Communists (PCP); the Socialists (PS), who managed to dominate governments and the legislature but not win a majority in the Assembly of the Republic; the Social Democrats (PSD); and the Christian Democrats (CDS). During this period, the annual growth rate was low (l-2 percent), and the nationalized sector of the economy stagnated.
       Enhanced economic growth, greater political stability, and more effective central government as of 1985, and especially 1987, were due to several developments. In 1977, Portugal applied for membership in the European Economic Community (EEC), now the European Union (EU) since 1993. In January 1986, with Spain, Portugal was granted membership, and economic and financial progress in the intervening years has been significantly influenced by the comparatively large investment, loans, technology, advice, and other assistance from the EEC. Low unemployment, high annual growth rates (5 percent), and moderate inflation have also been induced by the new political and administrative stability in Lisbon. Led by Prime Minister Cavaco Silva, an economist who was trained abroad, the PSD's strong organization, management, and electoral support since 1985 have assisted in encouraging economic recovery and development. In 1985, the PSD turned the PS out of office and won the general election, although they did not have an absolute majority of assembly seats. In 1986, Mário Soares was elected president of the republic, the first civilian to hold that office since the First Republic. In the elections of 1987 and 1991, however, the PSD was returned to power with clear majorities of over 50 percent of the vote.
       Although the PSD received 50.4 percent of the vote in the 1991 parliamentary elections and held a 42-seat majority in the Assembly of the Republic, the party began to lose public support following media revelations regarding corruption and complaints about Prime Minister Cavaco Silva's perceived arrogant leadership style. President Mário Soares voiced criticism of the PSD's seemingly untouchable majority and described a "tyranny of the majority." Economic growth slowed down. In the parliamentary elections of 1995 and the presidential election of 1996, the PSD's dominance ended for the time being. Prime Minister Antônio Guterres came to office when the PS won the October 1995 elections, and in the subsequent presidential contest, in January 1996, socialist Jorge Sampaio, the former mayor of Lisbon, was elected president of the republic, thus defeating Cavaco Silva's bid. Young and popular, Guterres moved the PS toward the center of the political spectrum. Under Guterres, the PS won the October 1999 parliamentary elections. The PS defeated the PSD but did not manage to win a clear, working majority of seats, and this made the PS dependent upon alliances with smaller parties, including the PCP.
       In the local elections in December 2001, the PSD's criticism of PS's heavy public spending allowed the PSD to take control of the key cities of Lisbon, Oporto, and Coimbra. Guterres resigned, and parliamentary elections were brought forward from 2004 to March 2002. The PSD won a narrow victory with 40 percent of the votes, and Jose Durão Barroso became prime minister. Having failed to win a majority of the seats in parliament forced the PSD to govern in coalition with the right-wing Popular Party (PP) led by Paulo Portas. Durão Barroso set about reducing government spending by cutting the budgets of local authorities, freezing civil service hiring, and reviving the economy by accelerating privatization of state-owned enterprises. These measures provoked a 24-hour strike by public-sector workers. Durão Barroso reacted with vows to press ahead with budget-cutting measures and imposed a wage freeze on all employees earning more than €1,000, which affected more than one-half of Portugal's work force.
       In June 2004, Durão Barroso was invited by Romano Prodi to succeed him as president of the European Commission. Durão Barroso accepted and resigned the prime ministership in July. Pedro Santana Lopes, the leader of the PSD, became prime minister. Already unpopular at the time of Durão Barroso's resignation, the PSD-led government became increasingly unpopular under Santana Lopes. A month-long delay in the start of the school year and confusion over his plan to cut taxes and raise public-sector salaries, eroded confidence even more. By November, Santana Lopes's government was so unpopular that President Jorge Sampaio was obliged to dissolve parliament and hold new elections, two years ahead of schedule.
       Parliamentary elections were held on 20 February 2005. The PS, which had promised the electorate disciplined and transparent governance, educational reform, the alleviation of poverty, and a boost in employment, won 45 percent of the vote and the majority of the seats in parliament. The leader of the PS, José Sôcrates became prime minister on 12 March 2005. In the regularly scheduled presidential elections held on 6 January 2006, the former leader of the PSD and prime minister, Aníbal Cavaco Silva, won a narrow victory and became president on 9 March 2006. With a mass protest, public teachers' strike, and street demonstrations in March 2008, Portugal's media, educational, and social systems experienced more severe pressures. With the spreading global recession beginning in September 2008, Portugal's economic and financial systems became more troubled.
       Owing to its geographic location on the southwestern most edge of continental Europe, Portugal has been historically in but not of Europe. Almost from the beginning of its existence in the 12th century as an independent monarchy, Portugal turned its back on Europe and oriented itself toward the Atlantic Ocean. After carving out a Christian kingdom on the western portion of the Iberian peninsula, Portuguese kings gradually built and maintained a vast seaborne global empire that became central to the way Portugal understood its individuality as a nation-state. While the creation of this empire allows Portugal to claim an unusual number of "firsts" or distinctions in world and Western history, it also retarded Portugal's economic, social, and political development. It can be reasonably argued that the Revolution of 25 April 1974 was the most decisive event in Portugal's long history because it finally ended Portugal's oceanic mission and view of itself as an imperial power. After the 1974 Revolution, Portugal turned away from its global mission and vigorously reoriented itself toward Europe. Contemporary Portugal is now both in and of Europe.
       The turn toward Europe began immediately after 25 April 1974. Portugal granted independence to its African colonies in 1975. It was admitted to the European Council and took the first steps toward accession to the European Economic Community (EEC) in 1976. On 28 March 1977, the Portuguese government officially applied for EEC membership. Because of Portugal's economic and social backwardness, which would require vast sums of EEC money to overcome, negotiations for membership were long and difficult. Finally, a treaty of accession was signed on 12 June 1985. Portugal officially joined the EEC (the European Union [EU] since 1993) on 1 January 1986. Since becoming a full-fledged member of the EU, Portugal has been steadily overcoming the economic and social underdevelopment caused by its imperial past and is becoming more like the rest of Europe.
       Membership in the EU has speeded up the structural transformation of Portugal's economy, which actually began during the Estado Novo. Investments made by the Estado Novo in Portugal's economy began to shift employment out of the agricultural sector, which, in 1950, accounted for 50 percent of Portugal's economically active population. Today, only 10 percent of the economically active population is employed in the agricultural sector (the highest among EU member states); 30 percent in the industrial sector (also the highest among EU member states); and 60 percent in the service sector (the lowest among EU member states). The economically active population numbers about 5,000,000 employed, 56 percent of whom are women. Women workers are the majority of the workforce in the agricultural and service sectors (the highest among the EU member states). The expansion of the service sector has been primarily in health care and education. Portugal has had the lowest unemployment rates among EU member states, with the overall rate never being more than 10 percent of the active population. Since joining the EU, the number of employers increased from 2.6 percent to 5.8 percent of the active population; self-employed from 16 to 19 percent; and employees from 65 to 70 percent. Twenty-six percent of the employers are women. Unemployment tends to hit younger workers in industry and transportation, women employed in domestic service, workers on short-term contracts, and poorly educated workers. Salaried workers earn only 63 percent of the EU average, and hourly workers only one-third to one-half of that earned by their EU counterparts. Despite having had the second highest growth of gross national product (GNP) per inhabitant (after Ireland) among EU member states, the above data suggest that while much has been accomplished in terms of modernizing the Portuguese economy, much remains to be done to bring Portugal's economy up to the level of the "average" EU member state.
       Membership in the EU has also speeded up changes in Portuguese society. Over the last 30 years, coastalization and urbanization have intensified. Fully 50 percent of Portuguese live in the coastal urban conurbations of Lisbon, Oporto, Braga, Aveiro, Coimbra, Viseu, Évora, and Faro. The Portuguese population is one of the oldest among EU member states (17.3 percent are 65 years of age or older) thanks to a considerable increase in life expectancy at birth (77.87 years for the total population, 74.6 years for men, 81.36 years for women) and one of the lowest birthrates (10.59 births/1,000) in Europe. Family size averages 2.8 persons per household, with the strict nuclear family (one or two generations) in which both parents work being typical. Common law marriages, cohabitating couples, and single-parent households are more and more common. The divorce rate has also increased. "Youth Culture" has developed. The young have their own meeting places, leisure-time activities, and nightlife (bars, clubs, and discos).
       All Portuguese citizens, whether they have contributed or not, have a right to an old-age pension, invalidity benefits, widowed persons' pension, as well as payments for disabilities, children, unemployment, and large families. There is a national minimum wage (€385 per month), which is low by EU standards. The rapid aging of Portugal's population has changed the ratio of contributors to pensioners to 1.7, the lowest in the EU. This has created deficits in Portugal's social security fund.
       The adult literacy rate is about 92 percent. Illiteracy is still found among the elderly. Although universal compulsory education up to grade 9 was achieved in 1980, only 21.2 percent of the population aged 25-64 had undergone secondary education, compared to an EU average of 65.7 percent. Portugal's higher education system currently consists of 14 state universities and 14 private universities, 15 state polytechnic institutions, one Catholic university, and one military academy. All in all, Portugal spends a greater percentage of its state budget on education than most EU member states. Despite this high level of expenditure, the troubled Portuguese education system does not perform well. Early leaving and repetition rates are among the highest among EU member states.
       After the Revolution of 25 April 1974, Portugal created a National Health Service, which today consists of 221 hospitals and 512 medical centers employing 33,751 doctors and 41,799 nurses. Like its education system, Portugal's medical system is inefficient. There are long waiting lists for appointments with specialists and for surgical procedures.
       Structural changes in Portugal's economy and society mean that social life in Portugal is not too different from that in other EU member states. A mass consumption society has been created. Televisions, telephones, refrigerators, cars, music equipment, mobile phones, and personal computers are commonplace. Sixty percent of Portuguese households possess at least one automobile, and 65 percent of Portuguese own their own home. Portuguese citizens are more aware of their legal rights than ever before. This has resulted in a trebling of the number of legal proceeding since 1960 and an eight-fold increase in the number of lawyers. In general, Portuguese society has become more permissive and secular; the Catholic Church and the armed forces are much less influential than in the past. Portugal's population is also much more culturally, religiously, and ethnically diverse, a consequence of the coming to Portugal of hundreds of thousands of immigrants, mainly from former African colonies.
       Portuguese are becoming more cosmopolitan and sophisticated through the impact of world media, the Internet, and the World Wide Web. A prime case in point came in the summer and early fall of 1999, with the extraordinary events in East Timor and the massive Portuguese popular responses. An internationally monitored referendum in East Timor, Portugal's former colony in the Indonesian archipelago and under Indonesian occupation from late 1975 to summer 1999, resulted in a vote of 78.5 percent for rejecting integration with Indonesia and for independence. When Indonesian prointegration gangs, aided by the Indonesian military, responded to the referendum with widespread brutality and threatened to reverse the verdict of the referendum, there was a spontaneous popular outpouring of protest in the cities and towns of Portugal. An avalanche of Portuguese e-mail fell on leaders and groups in the UN and in certain countries around the world as Portugal's diplomats, perhaps to compensate for the weak initial response to Indonesian armed aggression in 1975, called for the protection of East Timor as an independent state and for UN intervention to thwart Indonesian action. Using global communications networks, the Portuguese were able to mobilize UN and world public opinion against Indonesian actions and aided the eventual independence of East Timor on 20 May 2002.
       From the Revolution of 25 April 1974 until the 1990s, Portugal had a large number of political parties, one of the largest Communist parties in western Europe, frequent elections, and endemic cabinet instability. Since the 1990s, the number of political parties has been dramatically reduced and cabinet stability increased. Gradually, the Portuguese electorate has concentrated around two larger parties, the right-of-center Social Democrats (PSD) and the left-of-center Socialist (PS). In the 1980s, these two parties together garnered 65 percent of the vote and 70 percent of the seats in parliament. In 2005, these percentages had risen to 74 percent and 85 percent, respectively. In effect, Portugal is currently a two-party dominant system in which the two largest parties — PS and PSD—alternate in and out of power, not unlike the rotation of the two main political parties (the Regenerators and the Historicals) during the last decades (1850s to 1880s) of the liberal constitutional monarchy. As Portugal's democracy has consolidated, turnout rates for the eligible electorate have declined. In the 1970s, turnout was 85 percent. In Portugal's most recent parliamentary election (2005), turnout had fallen to 65 percent of the eligible electorate.
       Portugal has benefited greatly from membership in the EU, and whatever doubts remain about the price paid for membership, no Portuguese government in the near future can afford to sever this connection. The vast majority of Portuguese citizens see membership in the EU as a "good thing" and strongly believe that Portugal has benefited from membership. Only the Communist Party opposed membership because it reduces national sovereignty, serves the interests of capitalists not workers, and suffers from a democratic deficit. Despite the high level of support for the EU, Portuguese voters are increasingly not voting in elections for the European Parliament, however. Turnout for European Parliament elections fell from 40 percent of the eligible electorate in the 1999 elections to 38 percent in the 2004 elections.
       In sum, Portugal's turn toward Europe has done much to overcome its backwardness. However, despite the economic, social, and political progress made since 1986, Portugal has a long way to go before it can claim to be on a par with the level found even in Spain, much less the rest of western Europe. As Portugal struggles to move from underde-velopment, especially in the rural areas away from the coast, it must keep in mind the perils of too rapid modern development, which could damage two of its most precious assets: its scenery and environment. The growth and future prosperity of the economy will depend on the degree to which the government and the private sector will remain stewards of clean air, soil, water, and other finite resources on which the tourism industry depends and on which Portugal's world image as a unique place to visit rests. Currently, Portugal is investing heavily in renewable energy from solar, wind, and wave power in order to account for about 50 percent of its electricity needs by 2010. Portugal opened the world's largest solar power plant and the world's first commercial wave power farm in 2006.
       An American documentary film on Portugal produced in the 1970s described this little country as having "a Past in Search of a Future." In the years after the Revolution of 25 April 1974, it could be said that Portugal is now living in "a Present in Search of a Future." Increasingly, that future lies in Europe as an active and productive member of the EU.

    Historical dictionary of Portugal > Historical Portugal

  • 10 Lanchester, Frederick William

    [br]
    b. 28 October 1868 Lewisham, London, England
    d. 8 March 1946 Birmingham, England
    [br]
    English designer and builder of the first all-British motor car.
    [br]
    The fourth of eight children of an architect, he spent his childhood in Hove and attended a private preparatory school, from where, aged 14, he went to the Hartley Institution (the forerunner of Southampton University). He was then granted a scholarship to the Royal College of Science, South Kensington, and also studied practical engineering at Finsbury Technical College, London. He worked first for a draughtsman and pseudo-patent agent, and was then appointed Assistant Works Manager of the Forward Gas Engine Company of Birmingham, with sixty men and a salary of £1 per week. He was then aged 21. His younger brother, George, was apprenticed to the same company. In 1889 and 1890 he invented a pendulum governor and an engine starter which earned him royalties. He built a flat-bottomed river craft with a stern paddle-wheel and a vertical single-cylinder engine with a wick carburettor of his own design. From 1892 he performed a number of garden experiments on model gliders relating to problems of lift and drag, which led him to postulate vortices from the wingtips trailing behind, much of his work lying behind the theory of modern aerodynamics. The need to develop a light engine for aircraft led him to car design.
    In February 1896 his first experimental car took the road. It had a torsionally rigid chassis, a perfectly balanced and almost noiseless engine, dynamically stable steering, epicyclic gear for low speed and reverse with direct drive for high speed. It turned out to be underpowered and was therefore redesigned. Two years later an 8 hp, two-cylinder flat twin appeared which retained the principle of balancing by reverse rotation, had new Lanchester valve-gear and a new method of ignition based on a magneto generator. For the first time a worm and wheel replaced chain-drive or bevel-gear transmission. Lanchester also designed the machinery to make it. The car was capable of about 18 mph (29 km/h): future cars of his travelled at twice that speed. From 1899 to 1904 cars were produced for sale by the Lanchester Engine Company, which was formed in 1898. The company had to make every component except the tyres. Lanchester gave up the managership but remained as Chief Designer, and he remained in this post until 1914.
    In 1907–8 his two-volume treatise Aerial Flight was published; it included consideration of skin friction, boundary-layer theory and the theory of stability. In 1909 he was appointed to the Government's Committee for Aeronautics and also became a consultant to the Daimler Company. At the age of 51 he married Dorothea Cooper. He remained a consultant to Daimler and worked also for Wolseley and Beardmore until 1929 when he started Lanchester Laboratories, working on sound reproduction. He also wrote books on relativity and on the theory of dimensions.
    [br]
    Principal Honours and Distinctions
    FRS.
    Bibliography
    bht=1907–8, Aerial Flight, 2 vols.
    Further Reading
    P.W.Kingsford, 1966, F.W.Lanchester, Automobile Engineer.
    E.G.Semler (ed.), 1966, The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Lanchester, Frederick William

  • 11 Fauvelle, Pierre-Pascal

    [br]
    b. 4 June 1797 Rethel, Ardennes, France
    d. 19 December 1867 Perpignan, France
    [br]
    French inventor of hydraulic boring.
    [br]
    While attending the drilling of artesian wells in southern France in 1833, Fauvelle noticed that the debris from the borehole was carried out by the ascending water. This observation caused him to conceive the idea that the boring process need not necessarily be interrupted in order to clear the hole with an auger. It took him eleven years to develop his idea and to find financial backing to carry out his project in practice. In 1844, within a period of fifty-four days, he secretly bored an artesian well 219 m (718 ft) deep in Perpignan. One year later he secured his invention with a patent in France, and with another the following year in Spain.
    Fauvelle's process involved water being forced by a pressure pump through hollow rods to the bottom of the drill, whence it ascended through the annular space between the rod and the wall of the borehole, thus flushing the mud up to the surface. This method was similar to that of Robert Beart who had secured a patent in Britain but had not put it into practice. Although Fauvelle was not primarily concerned with the rotating action of the drill, his hydraulic boring method and its subsequent developments by his stepson, Alphonse de Basterot, formed an important step towards modern rotary drilling, which began with the work of Anthony F. Lucas near Beaumont, Texas, at the turn of the twentieth century. In the 1870s Albert Fauck, who also contributed important developments to the structure of boring rigs, had combined Fauvelle's hydraulic system with core-boring in the United States.
    [br]
    Bibliography
    1846, "Sur un nouveau système de forage", Comptes rendus de l'Académie des sciences, pp. 438–40; also printed in 1847 in Le Technologiste 8, pp. 87–8.
    Further Reading
    A.Birembeaut, 1968, "Pierre-Pascal Fauvelle", Dictionnaire de biographie française, vol. 13, pp. 808–10; also in L'Indépendant, Perpignan, 5–10 February (biography).
    A.de Basterot, 1868, Puits artésiens, sondages de mines, sondages d'études, système
    Fauvelle et de Basterot, Brussels (a detailed description of Fauvelle's methods and de Basterot's developments).
    WK

    Biographical history of technology > Fauvelle, Pierre-Pascal

  • 12 Soane, Sir John

    [br]
    b. 20 September 1753 Whitchurch, England
    d. 20 January 1837 London, England
    [br]
    English architect whose highly personalized architectural style foreshadowed the modern architecture of a century later.
    [br]
    Between 1777 and 1780 Soane studied in Italy on a Travelling Scholarship, working in Rome but also making extensive excursions further south to Paestum and Sicily to study the early and more severely simple Greek temples there.
    His architectural career began in earnest with his appointment as Surveyor to the Bank of England in 1788. He held this post until 1833 and during this time developed his highly individual style, which was based upon a wide range of classical sources extending from early Greek to Byzantine themes. His own work became progressively more linear and austere, his domes and arches shallower and more segmental. During the 1790s and early 1800s Soane redesigned several halls in the Bank, notably the Bank Stock Office, which in 1791 necessitated technological experimentation.
    The redesigning was required because of security problems which limited window openings to high-level positions and a need for fireproof construction because the site was so restricted. Soane solved the difficulties by introducing light through lunettes set high in the walls and through a Roman-style oculus in the centrally placed shallow dome. He utilized hollow terracotta pots as a lightweight material in the segmental vaulting.
    Sadly, the majority of Soane's work in the Bank interior was lost in the rebuilding during the 1930s, but Soane went on to develop his architectural style in his houses and churches as well as in a quantity of public buildings in Whitehall and Westminster.
    [br]
    Principal Honours and Distinctions
    Knighted 1831. Fellow Society of Antiquaries 1795. RA 1802. Royal Academy Professor of Architecture 1806. FRS 1821.
    Further Reading
    Sir John Summerson, 1952, Sir John Soane, 1753–1837, Art and Technics. Dorothy Stroud, 1961, The Architecture of Sir John Soane, Studio.
    DY

    Biographical history of technology > Soane, Sir John

  • 13 Creativity

       Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)
       Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)
       There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)
       he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)
       he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)
       From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)
       Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)
       The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)
       In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)
       he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)
        11) The Earliest Stages in the Creative Process Involve a Commerce with Disorder
       Even to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)
       New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)
       [P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....
       Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)
       A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....
       Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)

    Historical dictionary of quotations in cognitive science > Creativity

  • 14 Varian, Russell Harrison

    [br]
    b. 24 April 1898 Washington, DC, USA
    d. 28 July 1959 Juneau, Alaska, USA
    [br]
    American physicist who, with his brother Sigurd Varian and others, developed the klystron.
    [br]
    After attending schools in Palo Alto and Halcyon, Russell Varian went to Stanford University, gaining his BA in 1925 and his MA in 1927 despite illness and being dyslexic. His family being in need of financial help, he first worked for six months for Bush Electric in San Francisco and then for an oil company in Texas, returning to San Francisco in 1930 to join Farnsworth's Television Laboratory. After a move to Philadelphia, in 1933 the laboratory closed and Russell tried to take up a PhD course at Stanford but was rejected, so he trained as a teacher. However, although he did some teaching at Stanford it was not to be his career, for in 1935 he joined his brothers Sigurd and Eric in the setting up of a home laboratory.
    There, with William Hansen, a former colleague of Russell's at Stanford, they worked on the development of microwave oscillators, based on some of the latter's ideas. By 1937 they had made sufficient progress on an electron velocity-bunching tube, which they called the klystron, to obtain an agreement with the university to provide laboratory facilities in return for a share of any proceeds. By August that year they were able to produce continuous power at a wavelength of 13 cm. Clearly needing greater resources to develop and manufacture the tube, and with a possible war looming, a deal was struck with the Sperry Gyroscope Company to finance the work, which was transferred to the East Coast.
    In 1946, after the death of his first wife, Russell returned to Palo Alto, and in 1948 the brothers and Hansen founded Varian Associates to make microwave tubes for transmitters and linear accelerators and nuclear magnetic-resonance detectors. Subsequent research also resulted in the development of a satellite-borne magnetometer for measuring the earth's magnetic field.
    [br]
    Principal Honours and Distinctions
    Honorary DSc Brooklyn Polytechnic Institute 1943. Franklin Institute Medal.
    Bibliography
    1939, with S.F.Varian, "High frequency oscillator and amplifier", Journal of Applied Physics 10:321 (describes the klystron).
    Further Reading
    J.R.Pierce, 1962, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers 979 (provides background to development of the klystron).
    D.Varian, 1983, The Inventor and the Pilot (biographies of the brothers).
    KF

    Biographical history of technology > Varian, Russell Harrison

  • 15 Thornley, David

    SUBJECT AREA: Textiles
    [br]
    b. c. 1741 Liverpool (?), England
    d. 27 January 1772 Nottingham, England
    [br]
    English partner in Arkwright's cotton-spinning venture.
    [br]
    On 4 November 1766 David Thornley married Mary, daughter of Joseph Brown, roper, at St Peter's, Liverpool. In Gore's Dictionary for 1767 Thornley is described as "merchant" and his wife as "milliner" of Castle Street, Liverpool. David Thornley was distantly related to Richard Arkwright and certainly by 1768 Thornley had begun his active association with Arkwright when he joined him in Preston, an event recorded in the inquiry into the qualifications of those who had voted in the Burgoyne election. Thornley may have helped Arkwright with the technical development of his spinning machine.
    On 14 May 1768, Arkwright, Smalley and Thornley became partners in the cotton-spinning venture at Nottingham for a term of fourteen years, or longer if a patent could be obtained. Each partner was to have three one-ninth shares and was to advance such money as might be necessary to apply for a patent as well as to develop the spinning machine. Profits were to be divided equally as often as convenient and the partners were to devote their whole time to the business after a period of two years. How-ever, it seems that in 1769 the partners had difficulty in raising the necessary money to finance the patent, and Thornley had to reduce his stake in the partnership to a one-ninth share. By this time Thornley must have moved to Nottingham, where Arkwright established his first mill. On 19 January 1770, additional finance was provided by two new partners, Samuel Need and Jedediah Strutt, and alterations were made to the mill buildings that the partners had leased to work the spinning machines by horse power. Arkwright and Thornley were to be responsible for the day-to-day management of the mill, receiving £25 per annum for these duties. Thornley appears to have remained at Nottingham to supervise the mill, while the other partners moved to Cromford to establish the much larger enterprise there. It was at Nottingham that David Thornley died in January 1772, and his share in the partnership was bought from his wife, Mary, by Arkwright. Mary returned to her millinery business in Liverpool.
    [br]
    Further Reading
    Until copies of the original agreements between Arkwright's partners were presented to the University of Manchester Institute of Science and Technology, Thornley's existence was unknown. The only account of his life is given in R.S.Fitton, 1989, The Arkwrights, Spinners of Fortune, Manchester. The "Articles of Agreement", 19 June 1769, are printed in R.L. Hills, 1970, Power in the Industrial Revolution, Manchester. This book also includes part of Arkwright's agreement with his later partners which mentions Thornley's death and covers the technical aspects of the cotton-spinning invention.
    RLH

    Biographical history of technology > Thornley, David

См. также в других словарях:

  • Need for Speed — This article is about the game series. For the first Need for Speed video game, see The Need for Speed. For other uses, see Need for Speed (disambiguation). Need for Speed Current logo. Genres Racing …   Wikipedia

  • Need — For other uses, see Need (disambiguation). A need is something that is necessary for organisms to live a healthy life. Needs are distinguished from wants because a deficiency would cause a clear negative outcome, such as dysfunction or death.… …   Wikipedia

  • further — [[t]fɜ͟ː(r)ðə(r)[/t]] ♦ furthers, furthering, furthered (Further is a comparative form of far. It is also a verb.) 1) ADV COMPAR: ADV with v Further means to a greater extent or degree. Inflation is below 5% and set to fall further... The… …   English dictionary

  • Audi R8 (race car) — Racing car Car name=Audi R8 Category=Le Mans Prototype Constructor=Audi Designer=Michael Pfadenhauer (aerodynamics) Wolfgang Appel (chassis) Ulrich Baretzky (engine) Team= flagicon|DEU Audi Sport Team Joest flagicon|GBR Audi Sport UK flagicon|GBR …   Wikipedia

  • Billy Ryan High School — Excellence in Action[1] Location …   Wikipedia

  • Convia — Convia, Inc., based in Buffalo Grove, Illinois, is an American manufacturer of components which provide an integrated energy management platform that allows for the control and metering of lighting, plug loads and HVAC. It is notable as one of… …   Wikipedia

  • Jacob Schiff — Jacob Henry Schiff, born Jacob Hirsch Schiff (January 10, 1847 ndash; September 25, 1920) was a German born New York City banker and philanthropist, who helped finance, among many other things, the Japanese military efforts against Tsarist Russia …   Wikipedia

  • Niro — Infobox Company company name = Niro company company type = Corporation foundation = 1933 location = Copenhagen, Denmark key people = Anders Wilhjelm (President) Michael Andersen (Executive VP, CFO) Kristian Skaarup (Executive VP) Niels Erik Olsen …   Wikipedia

  • GEA Process Engineering — A/S Type Corporation Industry Process Engineering Spray drying Founded 1933 …   Wikipedia

  • Life Sciences — ▪ 2009 Introduction Zoology       In 2008 several zoological studies provided new insights into how species life history traits (such as the timing of reproduction or the length of life of adult individuals) are derived in part as responses to… …   Universalium

  • religion — religionless, adj. /ri lij euhn/, n. 1. a set of beliefs concerning the cause, nature, and purpose of the universe, esp. when considered as the creation of a superhuman agency or agencies, usually involving devotional and ritual observances, and… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»